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Outline

« Automation Tool -- AccDNN:

— An end-to-end automation tool for generating convolutional neural network in FPGA
without programming

— Some commercial pilots usecases.
— Cloud access for academic research and IBM’s production roadmap

 ELB-NN: Extremely low bit-width neural network
— Model compression and its efficient implementation in FPGA
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AccDNN: An Automation Tool

This work has been accepted in ICCAD’2018, San Diego, and wins the Best Paper Award.
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AccDNN : Accelerate the Deep Neural Network on FPGA

« Goal for programmability :

— A tool to generate DNN accelerator without FPGA programming and keep RTL level performance

DNN Application Design and (TGr?BIQ\%cF;ZSae;S}) Fii%"eg/i"i\'é’é‘ef;r&?if’f
Deployment Steps with AccDNN: R — Application Data Recognition Results
Train Data Set  DNN NetFile  (yeights)
1. Design the specific deep neural network. @ B Ny . ABEDINI Eﬁ
2. Training the network using GPU accelerator.
3. Use AccDNN to generate FPGA T l
implementation
4. Deploy the recognition application using

FPGA accelerator

A B Download i
FPGA Bit File St
Nvidia Telsa K40 GPU

Xilinx Virtex 7 FPGA

lllustration of training and recognition under Caffe framework
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AccDNN: From Model to Implementation

The critical stage is the translation.
The other stages could be completed with Xilinx EDA toolchains, like Vivado.

name: ~dummy-net” --input module---
layers { name: “data” ---} conv conv_instance(...)
layers { name: “conv” -} pool pool_instance(...)
layers { name: “pool” ---} ...more layers
- more layers ‘-* loss loss_instance(...)
layers { name: “loss” -} --output module---
\\~ _____________________________________________________________________
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AccDNN Workflow

Parse and aggregation | Resource Allocation | Mapping & Route | Code Generation
Graphic model for data flow | + 1/O bandwidth, RAM and « Mapping computation to « Verilog files
'+ Layer aggregation for efficient |~ MACs allocation - customized BLAS (Vector | . \yeights file
computation .+ CPFI/KPF calculation § multi-add, vector max/min, {0 b cores
.« Pipeline balance - exp) ~ and timing file

« Add controller logic

CPF: # of channels to parallelization

5 o i - Route pipelines i
i KPF: # of kernels to parallelization ;

. Data Weights Verilog Files
f layer aggregation ' 10:8.5 Ram:12, Macs:128 Buffer Buffer '

CPF=16/KPF=8

]

Model Files

=

Multi-Add Trees

i0:2.5 Ram:2, Macs: 16
CPF=4/KPF=4

: i0:4 Ram:6, Macs:32 Tel File
! I CPF=8/KPF=4 : i - -
. Graphic structure (DAG) i § | _ Timing File

CPF: parallelism in processing multiple input feature maps for each output feature map.
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Architectures of Convolution Acceleration (prior arts)

T|||ng and reuse of feature mapS iIn CONV IayerS[l] Line buffer based convolver in PE

Input Buffer Input Buffer

Output Buffer | I Output Buffer

I

Phase1 (Intermediate Results) Phase? (Final Resulis)

(b)

Tiling and reuse of feature map could provide balance between the
computation and bandwidth resource

e Usually suffer from the noncontiguous access of off-chip memory, results
in lower bandwidth utilization, needs well data layout for DRAM space.

* Diversity convolution layers needs different tiling patterns, design

. S *Burst Length
exploration 1k 16K8 32K 64KB 128k8

+#32bit ®64bit 128bit 256bit W512bit ®1024bit

[1]Jiantao Qiu, JieWang, Song Yao, et al. Going deeper with embedded fpga platform for convolutional neural network. In Proc. of FPGA, pages 26-35. ACM, 2016.
[2]Chen Zhang, Zhenman Fang, Peipei Zhou, et al. Caffeine: Towards uniformed representation and acceleration for deep convolutional neural networks. In Proc. of ICCAD,2016.
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Architectures of Convolution Acceleration (prior arts)

On-chip memory caching Winograd accelerator F(4,3) SuperTile for faster DSP

Host . Hiost

Memory

features filters

folinlzl o] lis] oln e

transform
Stream Buffers transform L

Accelerator

Non Linearity, Pooling, Output Feature-Map Cache
G e—————————————

N emmmmEm-—-—--

Crosspoint Prof Crosspoint Pro
Element Elemenl

1 Weight Arithmetic Weghl Arithmetic
Cache Unit Cache Unit

Input Features

1
1
1
1
1
\

Cosspow lPocessw g Crosspo 1P ocess ng
ment

Walght A.'ﬂhmallc Weight Arif ‘lhmei ic
Cache Cache

Cro! ptP

Waight Arithmetic Wei ghl Arithmetic
Cache Unit Cache Unit

W)

Input Feature-Map Cache

Global Sequencer &
Pointer Generators

transform 4

Y = AT[(Gg) © (BTd)] Eneeeee

Caching all feature-maps on-chip to significantly Winagrad is efficient for small size « Weights cached in DSP supertiles in fast

reduce memory bandwidth by benefit larger on-chip and stride kernels. A typical F(4,3) slow domain

memory in Intel’s high-end FPGAs, and the could reduce the multiplier from « Convolution operations time-folded to
convolution becomes a compute-bound problem. 12 to 6, 2x speed up. slow down data memory

but can not scale up large feature map (such as high ¢ Also the transformed data for the * Forms the core of reconfigurable neural-
resolution inputs) or low-end FPGAs. filter can be pre-computed, it still network processors

needs 2x more bandwidth.
* Needs extra computation resource
for A, B, and G operations.

[1] Utku Aydonat, Shane O’Connell, Davor Capalija, Andrew C. Ling, Gordon R. Chiu, An OpenCLTM Deep Learning Accelerator on Arria 10, FPGA’17
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Motivations and Features of AccDNN

1) An end-to-end automation tool which provides an integrated
design flow from deep learning frameworks to FPGA board-level
implementations.

. . . Weight buffer
2) A flexible support of quantization to address the limited resource WWi*KPF.*CMM*KPF,H*CPFHbts,,

issues, Our design supports flexible quantization for weights and

Layer based pipeline structure

External memory

External memory

Layeri Layer i+1

activations either within a layer or across layers in DNN. It also supports - 3 Re-
' 1 shape —* PEarray eee
binary and ternary networks. Buffer | |

3) A fine-grained layer-based pipeline architecture that can PR DwkPr B bW, B
achieve high throughput even without batch processing.

4) An unified and flexible Processing Engine (PE) that provides a two dimensional parallelism scheme for
implementing major layers in DNNs including convolutional layer and fully-connected layer.

5) An automatic resource allocation management scheme (A-REALM) that provides resource allocation across
network layers based on the external memory access bandwidth, data reuse behaviors, computation resource
availability, and network complexity

© 2016 International Business Machines Corporation 9



Proposed Column based Pipeline Dataflow

L | 1stcolumn convolution
L Jond column convolution

The kernels will be divided into several
groups, each group convolves the
whole column of the input feature map,
then the next group.

When all the groups finish convolution,
the next column will be performed.

© 2016 International Business Machines Corporation
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Example: kernel size is 3*3, stride 1,

This design only need a ring buffer of 4 columns for the input feature map. If
the feature map size is 224*224, it can save up to 98.2% on-chip RAM (reduced
from 224 columns to 4 columns).

Advantage of Layer plus Column based Pipeline:

= A layer-based pipeline architecture that can achieve high throughput for
satisfying the overwhelming streaming input data in edge-computing
applications (even without batch processing).

= Eliminate the bandwidth consumption of feature map load and restore, usually
feature map load and restore is not efficient for bandwidth utilization because of
its noncontiguous access.

= Column-based cache scheme can lower the latency caused by multi-layer
pipeline stages, and it can also greatly saves memory space when deploying
large-scale CNNs with high resolution image inputs.
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Extend Single Column to Multiple Columns for Higher Data Reuse :E5:

Performance (GOPS)

Lower data reuse
requirements.

\

The first few layers, H is large and
results in High data reuse.

PN
\

The last few layers, H is small, which results in
small data reuse.

Computation to communication Ratio (ops/by'te)

Use multiple columns, needs more RAMS, Each
kernel group convolves multiple column of the input feature
map, then the next kernel group

© 2016 International Business Machines Corporation

N

: Set available memory bandwidth: total
2: Set available on-chip memory for input feature map: rnf:-rrrl._;‘;f'm
3: Set single DSP’s bandwidth usage: BWg
4: Initialize Col, = 1; size of reshape buffer (e.g. widthT?,

{

depth ["‘: and width;"" according to K PF, and CFPF})

5: Allocate bandwidth

demand: BW, = £

: while > 7 | BW, = / HMCONV layer bandwidth

OVEeruse
Select layer ¢ in CC " layer with maximum BW
depthTdy = Hi™ tride:  depthld,+ — —
if 37 flwidthl<, AT, width®™) < meml®,

Clol, = Cal, + 1 he one more column
BW, = BW, »x -
else
{frestore if no enough memory
depthrd— — Hilxc &
break
endif

L ovEre

il e
et depthl?, — =

- endwhile




Layer based Pipeline Structure Mapped to FPGA

lanq
SIEY

Route to the DMA engine

'

Ping-Pong selectlon\

MUX /

Reshape Memory

Reshape Memory
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Layer #1

Layer #N

. Layer #3
[ Layer #2

=" The size of the PE (processing unit) is decided by the
CPF, if CPF is 4, the PE will be a 4-elements vector
Multiply-Add-Tree, and the number of PEs is decided
by the KPF.

= \We also use the double buffer to cache the weights
from the off-chip DRAM, each double buffer will be
routed to a DMA channel for weights fetching.

" The data in the reshape memory will be broadcasted
to each PE, and each stream has its own data buffer.

=" The weights will be dispatched to each PEs. All PE
arrays share the weights.

=" The K outputs will keep together to feed to the next
layer.

" The number of PE arrays depends on the number of
streams (batch size).
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Quantization of Deep Neural networks

* Quantization is always import for FPGA

— Fixed point multiplier is efficient for FPGA, such as 16bits/8bits.
— Reduce the DDR I/0 bandwidth requirement, board size & cost & power budget.
— Dynamic quantization is essential for deep learning.

— Non-symmetric quantization, activations and weights use different quantization/bitwidth, usually

activation is more sensitive to the numerical precision than weight.

) Float Point model Quantized network Ouantized fixed
ata '
: . . . point model
Train Quantization Retrain
Network
millions of iterations Dynamic and Non-symmetric  thousands of iterations

guantization

Use quantized weights in forward path while keeping float weights when updating gradients
In the backward path.

© 2016 International Business Machines Corporation 13



AccDNN Performance Results

Comparison : Embedded FPGAs for edge-devices

Zynq XC7Z045

- LUT: 218,600 Peaaking at
+ FF: 437,200 J

. BRAM: 545 226 GOPS
. DSP: 900

— Performance (GOPS) | 137 | w0 | [ac2(e2h |
Power Blficiency GOPSW) | 112|214 | (364028 _

[1] J. Qiu et al. Going deeper with embedded FPGA platform for convolutional
neural network. In FPGA, 2016.

[2] Q.Xiao et al. Exploring heterogeneous algorithms for accelerating deep convolu-
tional neural networks on FPGAs. In DAC, 2017.

Comparison : High-performance FPGAs for cloud computing

~ Refewe [ 5] | (@ | [0 [ DNNbulder JEENWEE .

Cloud-computing platforms . LUT: 663,360 Peaking at

Stratix V GXAT + CTU . FF:1326720 @ 4218

. BRAM: 2160

. DSP: 5520 GOPS
DSPs (USﬁd,.-"'lt(Jl‘dl) (5] ;Jdlf;?’donat et al. An OpenCL deep learning accelerator on Arria 10. In FPGA,

DSP Eflic iEIlC}" 99 1% (6] J. Zhang et al. Improving the performance of OpenCL-based FPGA accelerator

Performance (GOPS) 1382 1790 _| 2011 (1022) | Pl e e
; - - - - 10] H.Zengetal. A framework for generating high throughput CNN implementations
Power Efficiency GOPSW) [ 307 [ 78 [ - [ 9020800 J | wrcummom "
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Faster Response of Real-time Object detection for Video

= Start the computation immediately after the video frame input.
= Complete the detection immediately after the video frame finished, only 9ms delay.

= With the same computation capability, recurrent accelerator should have “45ms, the detection delay is reduced
up to 80.1%.

= For some critical objects (strict response time), could be detected immediately after the object streamed into the
accelerator.

_ b s
1130 I = e e e

gl P
S W

15t frame dunation @20FPS = 50rs 2" frame duration @20FPS = 50ms

Video input ¢ —\ : A\
0.017ms ‘:\ R
Convl <3 517 \Y i \Y
.172ms
Conv2 i A\ : \\\‘
Oby. 1 detected ODbj! 4 detected .
Conv9 9.92ms - . \
(output) " _ )
zResults output of 15 frame 9.04ms zDetectlon completed of 1t frame

Output time slot
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Use Case: Traffic Sign Detection in Night Environment

Detection for traffic sign as far as possible and in night time: Extremely

small object detection, 15pixels*15pixels, should detect ahead 60m.

Different weather situation , shape distortion due to the angle
between the camera and sign.

Low-end embedded system, 25FPS requirements.

oo

‘.-l\ o .

’ S P
— = s i " 3

e X s

Ideal case Complicated illumination
“(" - - ™
® (40)(=} '19'9
£ M. ; :
! = . St - S
| ‘é .'! i i rﬁ.?;’“", :

s
-

1

1

—

Shapé distortion Extremely small object
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~

Reponse time vs. Velocity
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Use Case: Traffic Sign Detection in Night Environment

Performance efficient light neural network models
 Use deep CNN to handle shape distortion, illumination invariance,
and use the low level feature to detect with higher spatial

c,°°4

. Cls+Bb id ind
resolutions s+Bbox(grid index)

* High resolution input (1280*448) without any down-sampling for
small object detection.

 Manual anchor selection, object size is range from 15*15 to 70*70, 1280748
we select 8 square anchors, from 1.0 to 4.5 with interval of 0.5 at

Detection
80*20 regression(YOLO)

feature map 1/16.

» Detection + classification, detect major categories(warning,
prohibitory, ...) then classify its sub-category/meaning, and improve
the precision as well.

© 2016 International Business Machines Corporation 17



Use Case: Traffic Sign Detection in Night Environment

Mapping two accelerators (detector plus classifier) to a single-embedded FPGA (Zyng XC7Z045), timing
enclosure in 200MHz working frequency in this 28nm chip without sophisticated manual timing adjustment.

Resource Utilization Complexity Speed Performance  DSP
LUT(218600) BRAM(545) DSP(900) (Giga oper) (images/s) (GOPS) efficiency

Detector  52921(25%) 278(51%) 604(67%)  11.2 18 201.6 83.7% ®
Classifier ~ 27451(13%) 93(17%) 140(16%) 0.137 161 44.1 78.8% ‘ \
Total 109223(50%) 473(87%) 744(83%) - 27.7 245.7 82.3% [ :

Network

Use the Kalman filter to do the on-line object tracking, using real-
time velocity information.

© 2016 International Business Machines Corporation 18



AccDNN on Cloud Service for Academic Research

We provide a try version with limited function in cloud
(https://crl.ptopenlab.com:8800/accdnn).
Anyone would like to have a try, please contact us for the account.

Step 1: Choose targeted hardware and

Step 2: Upload DNN model file

. PowerAl Interfence Engine . PowerAl Interfence Engine

Evaluation Board

Board resource - Xilinx Zyng-7000 XC7Z045-2FFG900C

E MEMORY LTS 18KB BLOCK RAMS

Select the percentage of your

total FPGA resource could be ssceirset rpoa resoure usage
used for accelerator.

© 2016 International Business Machines Corporation
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AccDNN on Cloud Service for Academic Research

Step 3: Analyze DNN, optimize resource Step 4: Upload the weights file
allocation and predict the performance of (caffe .caffemodel file) to generate the
e — e — Accelerator IP I

. PowerAl Interfence Engine . PowerAl Interfence Engine

« Create New Project

S Auto-optimized results, including the resource Srcvom Upload Weight Fl

e } usage, performance.

uf c ained wei
25284000000 images/s, DSP efficiency: 90.27% m
N DDEL FILENAME
tny-yolo

DEL FILENAME TYPE CPF KPF  MACS WEIGHTS ~ BRAM1SE DELAY(US)  DDR BW(MB/S)

onvolution dw 4 w 120761280 576 25

6w O

v 259522560

2v 0
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AccDNN for IBM’s Product Roadmap

IBM Inference Engine : Analyze, Generate, and Optimize Deep Neural Network
Accelerator automatically

Data Center: Generate model and accelerators Data center & Edge
-
» DNN model parser

FPGA (DC, edge)

5 Trained
‘*“*gﬁ‘f:" DNN NN structure Accelerator | Somenaug e

DNN model analyzer

Estimated resource /
performance

model t 4 E‘-,

Erioaias
GPU

e

of DNN
Mapping to back ends

CPU + GPU Neural network

\_ PowerAl Inference Engine/ processor

Our Goal: PowerAl Inference Engine is toolset to provide all these capabilities for inference

* Analyze DNN model and predict resource requirement, performance
e Convert and generate code packages based on different backend implementation for different HW architecture
e Optimize DNN model with different neural network compression technologies
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Released with IBM PowerAl Vision on Aug.17, 2018 IEE
Step 1: Upload data set and labeling Step 2: Create new task, choose targeted embedded platform
ﬁ IBM PowerAl Vision &aimn M o —
My Data Sets  / voc2017 :g, |BM PomrAl ViSion
Update Data Set - voc2017 | show Al Files =
My DL Tasks / Create New Task
Create New Task - Customized Object Detection For Embedded Device
Total: 9963, Page Count: 1661 My womspace
Video Data Platform n AEHEAISI6 | KA 18
Upload pictures ( jpg / png ) by dropping them here Or  Select some r"‘y Daxa SE!S
Tags: + =z @ motorbike (759)  bus (526)  sofa (821)  tvmonitor (728) bicycle (807)  cow (685)  boat (791) ‘
pottedplant (1217)  diningtable (609)  horse (801)  bottle (1291)  aeroplane (642)  chair (2806)  sheep (664)  bird (1175) train (630) My Tramed Mc{jels
dog (1068) car (3185) person (10674)
B 100% @ @ Delete Selected B Save iy lV.‘l'eb Ap|s
My Network Design Select Dataset Build Model
Step 3: Training/visualization My Deployable Binary .
S A In PowerAl Vision, we
e b o use different neural
For Data Center For Embedded Device network for different
deployment needs.
Name of Object Dector: voc-test
e Select Dataset voc2017 v
Select Hardware: ZC706 v
oo 2a158 HW device of FPGA.
e Cancel
(Demo video: https://ibm.box.com/s/um180x4nj0f8uyz246goagrvq8ukjl44)
© 2016 International Business Machines Corporation 22



IBM PowerAl Vision Steps

Step 4: Click simulate deploy to deploy the trained model onto
GPU server for simulation testing

My Trained Models

Name /1d Usage

pie_voc_test-model & Object Detection

test-model Object Detection

‘ admin '

Import From Zip File [l
Allow user to do simulation testing
for the trained model on GPU server

Categories Accuracy Created At Operation

2018-05-24 00:24:21 Bl Acions ~

2018-05-22 18:26:30 | ‘

sofa, chair, person, car 0.43257

prohibitionsign, mandato 0.00008

Step 7: Generated binary is ready for downloading onto FPGA device

My Deployable Binary

Name / Id

Ja-1d1a-4071-86d8-ff54¢710b811 ZCT706

ZCT706

Total: 2, Page Count: 1

Device Type Status

Download generated binary package

‘ admin _

Operation

Actions v

2018-05-17 17:09:44 Rename

Description Created At

uploaded 2018-05-22

uploaded

Delete

© 2016 International Business Machines Corporation

Step 5: Upload an image to do simulation testing
(on GPU server or FPGA server in future)

Step 6: Click to convert and generate deployable
binary for FPGA device

me /Id Usage Categories Accuracy  Created At Operation

sofa, chair,person, car.. 043257 2018-05-24 00:24:21

prohibitionsign, mandato...  0.00008  2018-05 Rename

 voc_test-model & Object Detection

t-model % Object Detection

Export As Zip File

Image Classification ~ damaged, normal 097917 2018-05-22 15:26:56

Generate Deployable Binary

23



Hardware Enablement (Edge Application)

\{{ FERTREES” INNOVATION

V3 Technology,.Ltd. FOR RESEARCH

Xilinx ZC706 Evaluation Board DeepRed, full SDK avaliable

© 2016 International Business Machines Corporation 24



Hardware Enablement (Data Center Application)

I https://github.com/open-power/snap

PSL/AXI bridge

Process B

Process A

Software Program

SNAP “
library Queue

© 2016 International Business Machines Corporation

Host

Control

Manager

Use High Level Synthesis tool to convert C/C++ to RTL, or directly use RTL
Programming based on SNAP library and AXI interface
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Hybrid Extremely Low Bit-width Neural Network (ELB-NN)

This work has been published in FPL’2018, Dublin, Ireland

© 2016 International Business Machines Corporation
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Deep Neural Network Model Optimization --prior arts

Pruning, quantized representation and Huffman coding (2~3x)[1]

 Significantly reduce the model size, I/0 bandwidth, and data transmission energy.

« Without loss of accuracy.

 Still requires high precision computation — not save computation too much

« Extra cost of sparse representation, unregulated computation, extra decoding effort.

Binary or ternary neural network (20x+) [21[3](4]

« Largely reduce the model size and I/0O bandwidth.
« Extremely higher throughput
« Without multiplier, only use xnor plus popcount (only for binary)

» Performance of full binary network drops from 57.1 to 35.1%, Alexnet at
larger scale network.

« Sitill keep float precision of activations in ternary network to maintain
accuracy, which is not efficient in FPGA.

[1] Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016
[2] Courbariaux et al. “Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to +1 or -1”

[3] Rastegari et al. “XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks”

[4] Fengfu Li et al. “Ternary Weight Networks”

© 2016 International Business Machines Corporation Theoretical peak performance (XI'IHX XC?ZO&%)



Motivations

FPGA on edge device is lack of computation resource, on-chip memory and
bandwidth because of the strict constraints on power budget, form factor, and cost.

e Scarce DSP block, even 7045(900 DSPs) can only provide 720GOPS(INT8 @200MHz) peak performance.
* Limited on-chip memory, results in frequent data swap.

* Limited DDR bandwidth, usually less than 32bits DDR3, even share the DDR width PS side.

Logic Cells (K)

Block RAM (Mb)

DSP Slices

Maximum I/O Pins

Maximum Transceiver Count

https://www.xilinx.com/products/silicon-devices/soc/zyng-7000.html#productTable

© 2016 International Business Machines Corporation 28



Motivations

ELB-NN neural networks adapt Al to edge-devices perfectly

Theoretical peak performance for low precision (evaluated

* ELB-NNs use lower bit-width of weights & on Xilinx XC7Z045, 200MHz)
L 40
activations (less comp. & mem. demands) as 36.57
« Embedded FPGAs deliver improved latency, energy 230
» - 22> 22.12
efficiency, and flexibility 320 18.58
C
<15
 Could leverage the massive LUTs resource in FPGA, %10 10.19 9.86
= 5 15
’ o 5
DSP block won’t be the bottleneck o I 0.72  0.36
®©
£ S S E . S
©(\ ‘@\Q \Q\ ‘@\0 @(\ ‘@6\ . \%\‘b \,\@
N @ N\ <@ N X9 O NG
P W F &

* How to maintain the accuracy with ELB quantization or tradeoff between accuracy and throughput?

* How to develop a FPGA design and accelerate ELB-NNs with high efficiency?

© 2016 International Business Machines Corporation 29



Motivations

Experimental results on Alexnet benchmark with various precision/bit-width

Alexnet-4-8218

| I l—» Last-FC weights bitwidth
network type

mid-FC weights bitwidth
Activation bitwidth mid-CONV weights bitwidth

first-CONV weights bitwidth

We need hybrid ELB-

NN solutions

Accuracy (Top-1)
Alexnet with float32 55.9%][6] Increasing the network complexity/scale to significantly
Alexnet-8-8888 54.6% brings back accuracy
Alexnet-8-8228 53.3%
Alexnet-8-8218 52.6% Activation precision has more significant impact to the final
Alexnet-8-8118 >1.1% classification accuracy
Alexnet-4-8218 49.3%
Alexnet-2-8218 46.1% Promising accuracy with binary/ternary weights in mid-
Alexnet-4-8218 (w/o group) 53.2% layers
Alexnet-4-8218 (extended) 54.5%

© 2016 International Business Machines Corporation 30



Example of Hybrid ELB-NN

Use relatively higher precision in first or last layer, since it is more sensitive to accuracy but less convolutional operation
Also its number of weights is relatively small, not won’t eat more one-chip memory and |I/O bandwidth

Utilize the sign bit after the RelLU to improve the activation precision without affording any extra bit
Ternary representation provides tradeoff of memory bandwidth, logic resource, and accuracy

Differentiated Weights

Ternary representation

T

8bits input /4bits

—)

\-
-~
-~
-~
~——

boost from 4bits to 5bits

© 2016 International Business Machines Corporation
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How to Train a Hybrid ELB-NN
Extended the caffe-Ristretto to support hybrid ELB-NN

e Binary/ternary weights with scale factor

» Activation (clip & quantization)

Enhance the training stability and accuracy

Hysteresis PACT[1]

[1] PACT: Parameterized Clipping Activation for Quantized Neural Networks, https://arxiv.org/abs/1805.06085
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Experimental Results:

TABLE II: AccELB performance evaluated on Xilinx ZC706 board

Utiliz: mnn (include SDK, around 11% LUT and BRAM) Barch Bandwidth | Complexity Speeal Performance

Network BRAM size | (GByles's) | (GOP) | Gmoeyy | (TOPS)

303(56%) RO8(90%)

498(91%) 550(61%)

041 -1*}1 ij 463(85%) | 880(98%)

L\]exnetﬁl ‘s ] {u,fu nmup ][h 28( “’4‘r! 435(80%) $330(93%

« Extended Alexnet- 8218 can reach up to 599.2 images/s, which surpasses the

baseline (Alexnet-8-8888) by 1.76x while still keeping the same accuracy.

* Significant reduction of 68% bandwidth resulting less power consumption. Half
of DDR hardware cost can be saved,

© 2016 International Business Machines Corporation 33



Comparison to other FPGA solution:

TABLE III: Comparison with existing FPGA-based low precision DNN accelerators
Reference AccELB(1)-VGGI6 | AccELB(2)-VGGI6

FPGA chip XC7Z020 XCTZ045 XC KU] Arris :1{} 115 XCTZ045 XCTZ045

Frequency [43MHz 200 MHz 125 MHz 200MHz 200 MHz

Network Type Binary E’:m ary Hybrid(4-8218) Hybrid(2-8118)
KLUTS (used/total) 60537 | STORISE | 39207663 [13.0/218.6 [38.0/218.6
Performance (TOPS) |02
efficiency (GOPS/KLUT) 3.95

e |LUT efficiency(GOPS per kilo LUTs), outperforms the most efficient work in [16] by 13%, even if we use one
more bits for the activation and the code is automatically generated.

 The major reason is that the generated code is RTL level, and the PE is well optimized and also written in RTL.

[15] R. Zhao et al. Accelerating binarized convolutional neural networks with software-programmable FPGAs. In FPGA, 2017.
[16] Y. Umuroglu et al. Finn: A framework for fast, scalable binarized neural network inference. In FPGA. ACM, 2017.

[19] Fraser Nicholas et al. Scaling binarized neural networks on reconfigurable logic. arXiv:1701.03400, 2017.

[5] N. Eriko et al. Accelerating binarized neural networks: Comparison of FPGA, CPU, GPU, and ASIC. FPT, 2016
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Comparison to GPU solution

Power Efficiency(images/s/watt)

350

300

250
200
"

52,67
Alexnet-2-8218 46.1%
Alexnet-4-8218 (w/o group)
100 Alexnet-4-8218 (extended)

50

AccELB AccELB AccELB GPU-P4 GPU-P40
(4-8218) (8-8218) (4-8218-ext)

e Aclear tradeoff between accuracy and efficiency is be observed.

 Extended Alexnet-4-8218 (the same accuracy as INT8) still outperforms the most efficient GPU (P4)
solution so far by 14%.
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Backup
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Unigque Requirements of Al Vision in Edge

* Very limited I/O bandwidth due to the power budget, cost, size, (usually 16/32bits DDR3)

* High resolution input, e.g. 720P/1080P, results in larger feature map size (can’t down-
sampling in some cases).

* Faster response, millisecond level latency
* No batching can be explored, any batching operation will introduce more latency.
e Task is usually simple, like detecting face, traffic sign,...

* |In many cases, the objects are very small, such as the view from the drone.
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A Typical Video Embedded System for Edge Computing

« Can video frame be feed into accelerator directly to alleviate the bandwidth pressure of memory?

« Can we utilize the video transmission time of video frame to reduce the acceleration latency?
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Spatial Complementary paired sparse kernel

Paired sparse kernel
S (%)= .
parse .oanv. ™ — | parse Lonv.
L (Weven) A "'F,; ¢ Il (Wodd) ‘
airwise I E—
Even (X) Odd (+) kernel fusion
Table 5. Classification accuracy on ImageNet of our networks. = <=
® @
Network Top-1 Ace. Top-5 Acc. | FLOPs | Tarams | Params | = S
(Conv) (Total) =2
o (9]
o <
_ S D
scFusion-4 2.43 fusion

scFusion-8
VGG-16 |31
scFusion-4
scFusion-8

AlexNet |17] ‘

ResNet-50 [3]

scFusion-4

scFusion-8 : :
scFusion-8 (group)* 2.90% '41 104

t: Group of two 1 % 1 convolutional layers in the residual block are set to 2.
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Discussions
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Figure 3. Left: Standard convolutional layer with batchnorm and
ReLU. Right: Depthwise Separable convolutions with Depthwise
and Pointwise layers followed by batchnorm and ReLLU.

MobileNet
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