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• Automation Tool -- AccDNN:
– An end-to-end automation tool for generating convolutional neural network in FPGA 

without programming

– Some commercial pilots usecases.

– Cloud access for academic research and IBM’s production roadmap

• ELB-NN: Extremely low bit-width neural network
– Model compression and its efficient implementation in FPGA

Outline



© 2016 International Business Machines Corporation 3

AccDNN: An Automation Tool

This work has been accepted in ICCAD’2018, San Diego, and wins the Best Paper Award.
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AccDNN : Accelerate the Deep Neural Network on FPGA

• Goal for programmability : 

– A tool to generate DNN accelerator without FPGA programming and keep RTL level performance

Xilinx Virtex 7 FPGA
Nvidia Telsa K40 GPU

Train Data Set DNN Net File
Model Parameters

(weights)

AccDNN

FPGA Bit File

Application Data Recognition Results

Training Process 

(GPU Accelerator)

Recognition Process

(FPGA Accelerator)

Download

1. Design the specific deep neural network.

2. Training the network using GPU accelerator.

3. Use AccDNN to generate FPGA 

implementation

4. Deploy the recognition application using 

FPGA accelerator 

DNN Application Design and 

Deployment Steps with AccDNN: 

Illustration of training and recognition under Caffe framework 
Do it Automatically!
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Net Model File Verilog File FPGA Bit File FPGA Execution

translation synthesis download

name: "dummy-net"
layers { name: "data" …}
layers { name: "conv" …}
layers { name: "pool" …}
… more layers …
layers { name: "loss" …}

--input module---

conv  conv_instance(…)

pool  pool_instance(…)

…more layers

loss  loss_instance(…)

--output module---

FPGA.bit

The critical stage is the translation.

The other stages could be completed with Xilinx EDA toolchains, like Vivado.

AccDNN: From Model to Implementation



© 2016 International Business Machines Corporation 6

AccDNN Workflow

CBR

Conv BN ReLU

Pool

Conca.

Conv Conv

Pool

layer aggregation

Graphic structure (DAG)

io:8.5 Ram:12, Macs:128

CPF=16/KPF=8

io:2.5 Ram:2, Macs:16

CPF=4/KPF=4

io:4 Ram:6, Macs:32

CPF=8/KPF=4

…

Multi-Add Trees

Controller

Weights 

Buffer

Data 

Buffer

Verilog Files

Weights File

Tcl File

Timing File

Model Files

Parse and aggregation

• Graphic model for data flow

• Layer aggregation for efficient 

computation

Resource Allocation

• I/O bandwidth, RAM and 

MACs allocation

• CPF/KPF calculation

• Pipeline balance

Mapping & Route

• Mapping computation to 

customized BLAS (Vector 

multi-add, vector max/min, 

exp)

• Add controller logic

• Route pipelines

Code Generation

• Verilog files

• Weights file

• Tcl file for IP cores 

and timing file

• …

…

CPF: # of channels  to parallelization

KPF: # of kernels to parallelization

CPF: parallelism in processing multiple input feature maps for each output feature map.

KPF: parallelism in processing multiple output feature maps.
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Tiling and reuse of feature maps in CONV layers[1] Line buffer based convolver in PE

Architectures of Convolution Acceleration (prior arts) 

[1]Jiantao Qiu, JieWang, Song Yao, et al. Going deeper with embedded fpga platform for convolutional neural network. In Proc. of FPGA, pages 26–35. ACM, 2016.

[2]Chen Zhang, Zhenman Fang, Peipei Zhou, et al. Caffeine: Towards uniformed representation and acceleration for deep convolutional neural networks. In Proc. of ICCAD,2016.

• Tiling and reuse of feature map could provide balance between the 
computation and bandwidth resource 

• Usually suffer from the noncontiguous access of off-chip memory, results 
in lower bandwidth utilization, needs well data layout for DRAM space. 

• Diversity convolution layers needs different tiling patterns, design 
exploration 

Effective bandwidth vs. burst length[2]
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Architectures of Convolution Acceleration (prior arts) 

Caching all feature-maps on-chip to significantly 
reduce memory bandwidth by benefit larger on-chip 
memory in Intel’s high-end FPGAs, and the 
convolution becomes a compute-bound problem. 

but can not scale up large feature map (such as high 
resolution inputs) or low-end FPGAs.

Winograd accelerator F(4,3)

• Winagrad is efficient for small size 
and stride kernels. A typical F(4,3) 
could reduce the multiplier from 
12 to 6, 2x speed up.

• Also the transformed data for the 
filter can be pre-computed, it still 
needs 2x more bandwidth.

• Needs extra computation resource 
for A, B, and G operations.

[1] Utku Aydonat, Shane O’Connell, Davor Capalija, Andrew C. Ling, Gordon R. Chiu, An OpenCLTM Deep Learning Accelerator on Arria 10, FPGA’17

On-chip memory caching SuperTile for faster DSP

• Weights cached in DSP supertiles in fast 
slow domain

• Convolution operations time-folded to 
slow down data memory

• Forms the core of reconfigurable neural-
network processors
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1) An end-to-end automation tool which provides an integrated 
design flow from deep learning frameworks to FPGA board-level 
implementations. 

2) A flexible support of quantization to address the limited resource 
issues, Our design supports flexible quantization for weights and 
activations either within a layer or across layers in DNN. It also supports 
binary and ternary networks.

3) A fine-grained layer-based pipeline architecture that can 
achieve high throughput even without batch processing.

Motivations and Features of AccDNN

4) An unified and flexible Processing Engine (PE) that provides a two dimensional parallelism scheme for 
implementing major layers in DNNs including convolutional layer and fully-connected layer. 

5) An automatic resource allocation management scheme (A-REALM) that provides resource allocation across 
network layers based on the external memory access bandwidth, data reuse behaviors, computation resource 
availability, and network complexity

Layer based pipeline structure
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Proposed Column based Pipeline Dataflow

Example: kernel size is 3*3, stride 1, 

This design only need a ring buffer of 4 columns for the input feature map. If 
the feature map size is 224*224, it can save up to 98.2% on-chip RAM (reduced 
from 224 columns to 4 columns).

1st column convolution

2nd column convolution …

The kernels will be divided into several 
groups, each group convolves the 
whole column of the input feature map, 
then the next group. 
When all the groups finish convolution, 
the next column will be performed.   

…

Group 1#

Group 2#

Group N#

Advantage of Layer plus Column based Pipeline:

 A layer-based pipeline architecture that can achieve high throughput for 
satisfying the overwhelming streaming input data in edge-computing 
applications (even without batch processing).

 Eliminate the bandwidth consumption of feature map load and restore, usually 
feature map load and restore is not efficient for bandwidth utilization because of 
its noncontiguous access.

 Column-based cache scheme can lower the latency caused by multi-layer 
pipeline stages, and it can also greatly saves memory space when deploying 
large-scale CNNs with high resolution image inputs.
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Computation to communication Ratio (ops/byte)

The first few layers, H is large and 

results in High data reuse.

The last few layers, H is small, which results in 
small data reuse.

Use multiple columns, needs more RAMs, Each 

kernel group convolves multiple column of the input feature 

map, then the next kernel group

Extend Single Column to Multiple Columns for Higher Data Reuse
Lower data reuse 
requirements.
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Layer based Pipeline Structure Mapped to FPGA

PE#1

MUX

Route to the DMA engine

W
e

ig
h

ts
 

b
u

ffe
r

Reshape Memory

Ping-Pong selection
……

Reshape Memory

PE#K

PE#1

PE#K

PE Array #1

PE Array #B

Layer #1

Layer #2

Layer #3

Layer #N

The size of the PE (processing unit) is decided by the 
CPF, if CPF is 4, the PE will be a 4-elements vector 
Multiply-Add-Tree, and the number of PEs is decided 
by the KPF. 

We also use the double buffer to cache the weights 
from the off-chip DRAM, each double buffer will be 
routed to a DMA channel for weights fetching.

The data in the reshape memory will be broadcasted 
to each PE, and each stream has its own data buffer.

The weights will be dispatched to each PEs. All PE 
arrays share the weights.

The K outputs will keep together to feed to the next 
layer.

The number of PE arrays depends on the number of 
streams (batch size).
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Quantization of Deep Neural networks

• Quantization is always import for FPGA

– Fixed point multiplier is efficient for FPGA, such as 16bits/8bits.

– Reduce the DDR I/O bandwidth requirement, board size & cost & power budget.

– Dynamic quantization is essential for deep learning.

– Non-symmetric quantization, activations and weights use different quantization/bitwidth, usually 

activation is more sensitive to the numerical precision than weight.

Train Quantization Retrain
Data

Network

Float Point model Quantized network
Quantized fixed 

point model

millions of iterations thousands of iterationsDynamic and Non-symmetric 

quantization 

Use quantized weights in forward path while keeping float weights when updating gradients 

in the backward path.
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AccDNN Performance Results

Comparison：Embedded FPGAs for edge-devices
Zynq XC7Z045

• LUT: 218,600

• FF: 437,200

• BRAM: 545

• DSP: 900

KU115

• LUT: 663,360

• FF: 1,326,720

• BRAM: 2160

• DSP: 5520

Comparison：High-performance FPGAs for cloud computing

Peaking at 

526 GOPS

Peaking at 

4218 

GOPS
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Start the computation immediately after the video frame input.

Complete the detection immediately after the video frame finished, only 9ms delay.

With the same computation capability, recurrent accelerator should have ~45ms, the detection delay is reduced 
up to 80.1%. 

For some critical objects (strict response time), could be detected immediately after the object streamed into the 
accelerator.

Faster Response of Real-time Object detection for Video

9.92ms

0.017ms

0.172ms

1st frame duration @20FPS = 50ms 

Detection completed of 1st frame

Conv1

Conv2

Video input

Conv9

(output)

2nd frame duration @20FPS = 50ms 

9.04msResults output of 1st frame

Obj. 1 detected Obj. 4 detected

Output time slot
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Use Case: Traffic Sign Detection in Night Environment

• Detection for traffic sign as far as possible and in night time: Extremely 
small object detection, 15pixels*15pixels, should detect ahead 60m.

• Different weather situation , shape distortion due to the angle 
between the camera and sign.

• Low-end embedded system, 25FPS requirements.

Shape distortion  

Ideal case

Extremely small object

Complicated illumination

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140

R
e

s
p

o
n

s
e

 t
im

e
(s

e
c

o
n

d
)

Velocity(km/h)

Reponse time vs. Velocity

15pixel 20pixel

7.2m

42m

57m

3
.5

m

0
.6

m

20pixe

l

15pixe

l

Start to get out
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Performance efficient light neural network models 
• Use deep CNN to handle shape distortion, illumination invariance, 

and use the low level feature to detect with higher spatial 

resolutions

• High resolution input (1280*448) without any down-sampling for 

small object detection.

• Manual anchor selection, object size is range from 15*15 to 70*70, 

we select 8 square anchors, from 1.0 to 4.5 with interval of 0.5 at 

feature map 1/16. 

• Detection + classification, detect major categories(warning, 

prohibitory, …) then classify its sub-category/meaning, and improve 

the precision as well.

Use Case: Traffic Sign Detection in Night Environment

…

1280*448

80*20

Detection 

regression(YOLO)

Cls+Bbox(grid index)
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Use Case: Traffic Sign Detection in Night Environment

Mapping two accelerators (detector plus classifier) to a single-embedded FPGA (Zynq XC7Z045), timing 
enclosure in 200MHz working frequency in this 28nm chip without sophisticated manual timing adjustment.

• Use the Kalman filter to do the on-line object tracking, using real-

time velocity information. 

Network
Resource Utilization Complexity

(Giga oper)

Speed

(images/s)

Performance

(GOPS)

DSP 

efficiencyLUT(218600) BRAM(545) DSP(900)

Detector 52921(25%) 278(51%) 604(67%) 11.2 18 201.6 83.7%

Classifier 27451(13%) 93(17%) 140(16%) 0.137 161 44.1 78.8%

Total 109223(50%) 473(87%) 744(83%) --- 27.7 245.7 82.3%
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AccDNN on Cloud Service for Academic Research

We provide a try version with limited function in cloud 
(https://crl.ptopenlab.com:8800/accdnn). 
Anyone would like to have a try, please contact us for the account.

Step 1: Choose targeted hardware and 

resource budget

Step 2: Upload DNN model file 

(Caffe .prototxt file)
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AccDNN on Cloud Service for Academic Research

Step 3: Analyze DNN, optimize resource 

allocation and predict the performance of 

default accelerator

Step 4: Upload the weights file 

(caffe .caffemodel file) to generate the 

Accelerator IP
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AccDNN for IBM’s Product Roadmap

21

IBM Inference Engine : Analyze, Generate, and Optimize Deep Neural Network 
Accelerator automatically

Our Goal: PowerAI Inference Engine is toolset to provide all these capabilities for inference automatically.

• Analyze DNN model and predict resource requirement, performance
• Convert and generate code packages based on different backend implementation for different HW architecture
• Optimize DNN model with different neural network compression technologies
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Step 1: Upload data set and labeling

Step 3: Training/visualization

Step 2: Create new task, choose targeted embedded platform

In PowerAI Vision, we 

use different neural 

network for different 

deployment needs.

HW device of FPGA. 

(Demo video: https://ibm.box.com/s/um180x4nj0f8uyz246goagrvq8ukj144)

Released with IBM PowerAI Vision on Aug.17, 2018
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Step 4: Click simulate deploy to deploy the trained model onto 

GPU server for simulation testing

Step 5: Upload an image to do simulation testing 

(on GPU server or FPGA server in future)

Allow user to do simulation testing 

for the trained model on GPU server

Step 6: Click to convert and generate deployable 

binary for FPGA device
Step 7: Generated binary is ready for downloading onto FPGA device

Download generated binary package

IBM PowerAI Vision Steps
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Hardware Enablement (Edge Application)

Xilinx ZC706 Evaluation Board DeepRed, full SDK avaliable
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Hardware Enablement (Data Center Application)

SNAP framework: Spend Time on Algorithms Not on Coding 
https://github.com/open-power/snap

Process C

Slave Context

libcxl

cxl

SNAP

library      
Job

Queue

Process B

Slave Context

libcxl

cxl

SNAP

library      
Job

Queue

Process A

Slave Context

libcxl

cxl

SNAP

library      
Job

Queue

Application on Host Acceleration on FPGA

Software Program

PSL/AXI bridge

DRAM
on-card

Network

NVMeAXI

Host 

DMA

Control

MMIO

Job 

Manager

Job

Queue

Quick and easy developing platform

Use High Level Synthesis tool to convert C/C++ to RTL, or directly use RTL

Programming based on SNAP library and AXI interface

AccDNN

Hardware Action

HDK:

CAPI

PSL

CAPI
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Hybrid Extremely Low Bit-width Neural Network (ELB-NN)

This work has been published in FPL’2018, Dublin, Ireland
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Sparse

Deep Neural Network Model Optimization --prior arts

Pruning, quantized representation and Huffman coding (2~3x)[1] 

• Significantly reduce the model size, I/O bandwidth, and data transmission energy.

• Without loss of accuracy.

• Still requires high precision computation – not save computation too much

• Extra cost of sparse representation, unregulated computation, extra decoding effort.

Binary or ternary neural network (20x+) [2][3][4]

• Largely reduce the model size and I/O bandwidth.

• Extremely higher throughput

• Without multiplier, only use xnor plus popcount (only for binary)

• Performance of full binary network drops from 57.1 to 35.1%, Alexnet at 

larger scale network.

• Still keep float precision of activations in ternary network to maintain 

accuracy, which is not efficient in FPGA. 

[1] Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016
[2] Courbariaux et al. “Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to +1 or -1”
[3] Rastegari et al. “XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks”
[4] Fengfu Li et al. “Ternary Weight Networks”

Binary

Theoretical peak performance (Xilinx XC7Z045)
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FPGA on edge device is lack of computation resource, on-chip memory and 
bandwidth because of the strict constraints on power budget, form factor, and cost.

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html#productTable

• Scarce DSP block, even 7045(900 DSPs) can only provide 720GOPS(INT8@200MHz) peak performance. 

• Limited on-chip memory, results in frequent data swap.

• Limited  DDR bandwidth, usually less than 32bits DDR3, even share the DDR width PS side. 

Motivations
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• ELB-NNs use lower bit-width of weights & 

activations (less comp. & mem. demands)

• Embedded FPGAs deliver improved latency, energy 

efficiency, and flexibility

• Could leverage the massive LUTs resource in FPGA, 

DSP block won’t be the bottleneck
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• How to maintain the accuracy with ELB quantization or tradeoff between accuracy and throughput?

• How to develop a FPGA design and accelerate ELB-NNs with high efficiency?

Theoretical peak performance for low precision (evaluated 

on Xilinx XC7Z045, 200MHz)

ELB-NN neural networks adapt AI to edge-devices perfectly 

Motivations
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We need hybrid ELB-

NN solutions

Experimental results on Alexnet benchmark with various precision/bit-width

• Increasing the network complexity/scale to significantly 
brings back accuracy

• Activation precision has more significant impact to the final 
classification accuracy

• Promising accuracy with binary/ternary weights in mid-
layers

Motivations
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Ternary representation

…

• Use relatively higher precision in first or last layer, since it is more sensitive to accuracy but less convolutional operation.

Also its number of weights is relatively small, not won’t eat more one-chip memory and I/O bandwidth. 

• Utilize the sign bit after the ReLU to improve the activation precision without affording any extra bit.

• Ternary representation provides tradeoff of memory bandwidth, logic resource, and accuracy. 

Example of Hybrid ELB-NN
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• Binary/ternary weights with scale factor

• Activation (clip & quantization) 

Extended the caffe-Ristretto to support hybrid ELB-NN

Enhance the training stability and accuracy

Hysteresis PACT[1]

[1] PACT: Parameterized Clipping Activation for Quantized Neural Networks, https://arxiv.org/abs/1805.06085

How to Train a Hybrid ELB-NN
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• Extended Alexnet- 8218 can reach up to 599.2 images/s, which surpasses the 
baseline (Alexnet-8-8888) by 1.76x while still keeping the same accuracy. 

• Significant reduction of 68% bandwidth resulting less power consumption. Half 
of DDR hardware cost can be saved,

Experimental Results:
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Comparison to other FPGA solution:

• [15] R. Zhao et al. Accelerating binarized convolutional neural networks with software-programmable FPGAs. In FPGA, 2017.
• [16] Y. Umuroglu et al. Finn: A framework for fast, scalable binarized neural network inference. In FPGA. ACM, 2017.
• [19] Fraser Nicholas et al. Scaling binarized neural networks on reconfigurable logic. arXiv:1701.03400, 2017.
• [5] N. Eriko et al. Accelerating binarized neural networks: Comparison of FPGA, CPU, GPU, and ASIC. FPT, 2016

• LUT efficiency(GOPS per kilo LUTs), outperforms the most efficient work in [16] by 13%, even if we use one 
more bits for the activation and the code is automatically generated.

• The major reason is that the generated code is RTL level, and the PE is well optimized and also written in RTL.
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• A clear tradeoff between accuracy and efficiency is be observed. 

• Extended Alexnet-4-8218 (the same accuracy as INT8) still outperforms the most efficient GPU (P4) 

solution so far by 14%.

Comparison to GPU solution
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Backup
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Unique Requirements of AI Vision in Edge

• Very limited I/O bandwidth due to the power budget, cost, size, (usually 16/32bits DDR3)

• High resolution input, e.g. 720P/1080P, results in larger feature map size (can’t down-
sampling in some cases).

• Faster response, millisecond level latency

• No batching can be explored, any batching operation will introduce more latency.

• Task is usually simple, like detecting face, traffic sign,…

• In many cases, the objects are very small, such as the view from the drone.



© 2016 International Business Machines Corporation 38

A
X

I IC
A

X
I IC

D
M

A

(V
id

e
o

 s
tre

a
m

)

D
M

A

(A
c
c
e
le

ra
to

r)

IN
P

U
T

 

F
IF

O
D

N
N

 

A
c
c
e
le

ra
to

r

6
4
@

2
0
0
M

6
4
@

2
0
0
M

6
4
@

2
0
0
M

6
4
@

2
0
0
M

MIG&DMA

M
U

X

DDR3

32/64@1600MT/s

512@200M

HP0

HP1

A
X

I IC

GP0

User Space 

Registers

(ctrl&status.)

R
e
g

is
te

rs
 

D
riv

e
r(R

D
/W

R
)

D
M

A
 D

riv
e
r

(V
id

e
o

 s
tre

a
m

 &
 A

c
c
e
le

ra
to

r)

P
re

p
ro

c
e
s
s
in

g

(re
s
iz

e
/tra

n
s
...)

P
o

s
t-p

ro
c

e
s
s
in

g

(N
M

S
, m

a
rk

,…
)

Video Queue

Accelerator Queue

D
e
te

c
te

d
 O

b
je

c
ts

  p
a

c
k

a
g

e
 

o
n

 C
A

N
 p

ro
to

c
o

l

C
A

N
 O

U
T

PL/FPGA PS/ARM
Accelerator Info.

Conf.&Bbox

Initial.&Config.

DNN Weights

720p/1080p

@60/30FPS

O
U

T
P

U
T

 

F
IF

OVideo out

P
re

p
ro

c
e
s
s
in

g

A Typical Video Embedded System for Edge Computing

• Can video frame be feed into accelerator directly to alleviate the bandwidth pressure of memory?

• Can we utilize the video transmission time of video frame to reduce the acceleration latency?
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1x1 

convolutions

3x3 

convolutions

5x5 

convolutions

Filter 

concatenation

Previous layer

3x3 max 

pooling

1x1 

convolutions

1x1 

convolutions

1x1 

convolutions

Inception

MobileNet

ShuffleNet

ResNeXt

Discussions
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Intelligent.


