
Presented By

Wang Jun Song (王均松)

IBM Research, China

AI for AI: Automatically Generate Deep Neural Network

Accelerator in FPGA for Data-center and Edge.

© 2016 International Business Machines Corporation 2

• Automation Tool -- AccDNN:
– An end-to-end automation tool for generating convolutional neural network in FPGA

without programming

– Some commercial pilots usecases.

– Cloud access for academic research and IBM’s production roadmap

• ELB-NN: Extremely low bit-width neural network
– Model compression and its efficient implementation in FPGA

Outline

© 2016 International Business Machines Corporation 3

AccDNN: An Automation Tool

This work has been accepted in ICCAD’2018, San Diego, and wins the Best Paper Award.

© 2016 International Business Machines Corporation 4

AccDNN : Accelerate the Deep Neural Network on FPGA

• Goal for programmability :

– A tool to generate DNN accelerator without FPGA programming and keep RTL level performance

Xilinx Virtex 7 FPGA
Nvidia Telsa K40 GPU

Train Data Set DNN Net File
Model Parameters

(weights)

AccDNN

FPGA Bit File

Application Data Recognition Results

Training Process

(GPU Accelerator)

Recognition Process

(FPGA Accelerator)

Download

1. Design the specific deep neural network.

2. Training the network using GPU accelerator.

3. Use AccDNN to generate FPGA

implementation

4. Deploy the recognition application using

FPGA accelerator

DNN Application Design and

Deployment Steps with AccDNN:

Illustration of training and recognition under Caffe framework
Do it Automatically!

© 2016 International Business Machines Corporation 5

Net Model File Verilog File FPGA Bit File FPGA Execution

translation synthesis download

name: "dummy-net"
layers { name: "data" …}
layers { name: "conv" …}
layers { name: "pool" …}
… more layers …
layers { name: "loss" …}

--input module---

conv conv_instance(…)

pool pool_instance(…)

…more layers

loss loss_instance(…)

--output module---

FPGA.bit

The critical stage is the translation.

The other stages could be completed with Xilinx EDA toolchains, like Vivado.

AccDNN: From Model to Implementation

© 2016 International Business Machines Corporation 6

AccDNN Workflow

CBR

Conv BN ReLU

Pool

Conca.

Conv Conv

Pool

layer aggregation

Graphic structure (DAG)

io:8.5 Ram:12, Macs:128

CPF=16/KPF=8

io:2.5 Ram:2, Macs:16

CPF=4/KPF=4

io:4 Ram:6, Macs:32

CPF=8/KPF=4

…

Multi-Add Trees

Controller

Weights

Buffer

Data

Buffer

Verilog Files

Weights File

Tcl File

Timing File

Model Files

Parse and aggregation

• Graphic model for data flow

• Layer aggregation for efficient

computation

Resource Allocation

• I/O bandwidth, RAM and

MACs allocation

• CPF/KPF calculation

• Pipeline balance

Mapping & Route

• Mapping computation to

customized BLAS (Vector

multi-add, vector max/min,

exp)

• Add controller logic

• Route pipelines

Code Generation

• Verilog files

• Weights file

• Tcl file for IP cores

and timing file

• …

…

CPF: # of channels to parallelization

KPF: # of kernels to parallelization

CPF: parallelism in processing multiple input feature maps for each output feature map.

KPF: parallelism in processing multiple output feature maps.

© 2016 International Business Machines Corporation 7

Tiling and reuse of feature maps in CONV layers[1] Line buffer based convolver in PE

Architectures of Convolution Acceleration (prior arts)

[1]Jiantao Qiu, JieWang, Song Yao, et al. Going deeper with embedded fpga platform for convolutional neural network. In Proc. of FPGA, pages 26–35. ACM, 2016.

[2]Chen Zhang, Zhenman Fang, Peipei Zhou, et al. Caffeine: Towards uniformed representation and acceleration for deep convolutional neural networks. In Proc. of ICCAD,2016.

• Tiling and reuse of feature map could provide balance between the
computation and bandwidth resource

• Usually suffer from the noncontiguous access of off-chip memory, results
in lower bandwidth utilization, needs well data layout for DRAM space.

• Diversity convolution layers needs different tiling patterns, design
exploration

Effective bandwidth vs. burst length[2]

© 2016 International Business Machines Corporation 8

Architectures of Convolution Acceleration (prior arts)

Caching all feature-maps on-chip to significantly
reduce memory bandwidth by benefit larger on-chip
memory in Intel’s high-end FPGAs, and the
convolution becomes a compute-bound problem.

but can not scale up large feature map (such as high
resolution inputs) or low-end FPGAs.

Winograd accelerator F(4,3)

• Winagrad is efficient for small size
and stride kernels. A typical F(4,3)
could reduce the multiplier from
12 to 6, 2x speed up.

• Also the transformed data for the
filter can be pre-computed, it still
needs 2x more bandwidth.

• Needs extra computation resource
for A, B, and G operations.

[1] Utku Aydonat, Shane O’Connell, Davor Capalija, Andrew C. Ling, Gordon R. Chiu, An OpenCLTM Deep Learning Accelerator on Arria 10, FPGA’17

On-chip memory caching SuperTile for faster DSP

• Weights cached in DSP supertiles in fast
slow domain

• Convolution operations time-folded to
slow down data memory

• Forms the core of reconfigurable neural-
network processors

© 2016 International Business Machines Corporation 9

1) An end-to-end automation tool which provides an integrated
design flow from deep learning frameworks to FPGA board-level
implementations.

2) A flexible support of quantization to address the limited resource
issues, Our design supports flexible quantization for weights and
activations either within a layer or across layers in DNN. It also supports
binary and ternary networks.

3) A fine-grained layer-based pipeline architecture that can
achieve high throughput even without batch processing.

Motivations and Features of AccDNN

4) An unified and flexible Processing Engine (PE) that provides a two dimensional parallelism scheme for
implementing major layers in DNNs including convolutional layer and fully-connected layer.

5) An automatic resource allocation management scheme (A-REALM) that provides resource allocation across
network layers based on the external memory access bandwidth, data reuse behaviors, computation resource
availability, and network complexity

Layer based pipeline structure

© 2016 International Business Machines Corporation 10

Proposed Column based Pipeline Dataflow

Example: kernel size is 3*3, stride 1,

This design only need a ring buffer of 4 columns for the input feature map. If
the feature map size is 224*224, it can save up to 98.2% on-chip RAM (reduced
from 224 columns to 4 columns).

1st column convolution

2nd column convolution …

The kernels will be divided into several
groups, each group convolves the
whole column of the input feature map,
then the next group.
When all the groups finish convolution,
the next column will be performed.

…

Group 1#

Group 2#

Group N#

Advantage of Layer plus Column based Pipeline:

 A layer-based pipeline architecture that can achieve high throughput for
satisfying the overwhelming streaming input data in edge-computing
applications (even without batch processing).

 Eliminate the bandwidth consumption of feature map load and restore, usually
feature map load and restore is not efficient for bandwidth utilization because of
its noncontiguous access.

 Column-based cache scheme can lower the latency caused by multi-layer
pipeline stages, and it can also greatly saves memory space when deploying
large-scale CNNs with high resolution image inputs.

© 2016 International Business Machines Corporation 11

P
e

rf
o

rm
a

n
c
e

 (
G

O
P

S
)

Computation to communication Ratio (ops/byte)

The first few layers, H is large and

results in High data reuse.

The last few layers, H is small, which results in
small data reuse.

Use multiple columns, needs more RAMs, Each

kernel group convolves multiple column of the input feature

map, then the next kernel group

Extend Single Column to Multiple Columns for Higher Data Reuse
Lower data reuse
requirements.

© 2016 International Business Machines Corporation 12

Layer based Pipeline Structure Mapped to FPGA

PE#1

MUX

Route to the DMA engine

W
e

ig
h

ts

b
u

ffe
r

Reshape Memory

Ping-Pong selection
……

Reshape Memory

PE#K

PE#1

PE#K

PE Array #1

PE Array #B

Layer #1

Layer #2

Layer #3

Layer #N

The size of the PE (processing unit) is decided by the
CPF, if CPF is 4, the PE will be a 4-elements vector
Multiply-Add-Tree, and the number of PEs is decided
by the KPF.

We also use the double buffer to cache the weights
from the off-chip DRAM, each double buffer will be
routed to a DMA channel for weights fetching.

The data in the reshape memory will be broadcasted
to each PE, and each stream has its own data buffer.

The weights will be dispatched to each PEs. All PE
arrays share the weights.

The K outputs will keep together to feed to the next
layer.

The number of PE arrays depends on the number of
streams (batch size).

© 2016 International Business Machines Corporation 13

Quantization of Deep Neural networks

• Quantization is always import for FPGA

– Fixed point multiplier is efficient for FPGA, such as 16bits/8bits.

– Reduce the DDR I/O bandwidth requirement, board size & cost & power budget.

– Dynamic quantization is essential for deep learning.

– Non-symmetric quantization, activations and weights use different quantization/bitwidth, usually

activation is more sensitive to the numerical precision than weight.

Train Quantization Retrain
Data

Network

Float Point model Quantized network
Quantized fixed

point model

millions of iterations thousands of iterationsDynamic and Non-symmetric

quantization

Use quantized weights in forward path while keeping float weights when updating gradients

in the backward path.

© 2016 International Business Machines Corporation 14

AccDNN Performance Results

Comparison：Embedded FPGAs for edge-devices
Zynq XC7Z045

• LUT: 218,600

• FF: 437,200

• BRAM: 545

• DSP: 900

KU115

• LUT: 663,360

• FF: 1,326,720

• BRAM: 2160

• DSP: 5520

Comparison：High-performance FPGAs for cloud computing

Peaking at

526 GOPS

Peaking at

4218

GOPS

© 2016 International Business Machines Corporation 15

Start the computation immediately after the video frame input.

Complete the detection immediately after the video frame finished, only 9ms delay.

With the same computation capability, recurrent accelerator should have ~45ms, the detection delay is reduced
up to 80.1%.

For some critical objects (strict response time), could be detected immediately after the object streamed into the
accelerator.

Faster Response of Real-time Object detection for Video

9.92ms

0.017ms

0.172ms

1st frame duration @20FPS = 50ms

Detection completed of 1st frame

Conv1

Conv2

Video input

Conv9

(output)

2nd frame duration @20FPS = 50ms

9.04msResults output of 1st frame

Obj. 1 detected Obj. 4 detected

Output time slot

© 2016 International Business Machines Corporation 16

Use Case: Traffic Sign Detection in Night Environment

• Detection for traffic sign as far as possible and in night time: Extremely
small object detection, 15pixels*15pixels, should detect ahead 60m.

• Different weather situation , shape distortion due to the angle
between the camera and sign.

• Low-end embedded system, 25FPS requirements.

Shape distortion

Ideal case

Extremely small object

Complicated illumination

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140

R
e

s
p

o
n

s
e

 t
im

e
(s

e
c

o
n

d
)

Velocity(km/h)

Reponse time vs. Velocity

15pixel 20pixel

7.2m

42m

57m

3
.5

m

0
.6

m

20pixe

l

15pixe

l

Start to get out

Estimated on the following scenario.

© 2016 International Business Machines Corporation 17

Performance efficient light neural network models
• Use deep CNN to handle shape distortion, illumination invariance,

and use the low level feature to detect with higher spatial

resolutions

• High resolution input (1280*448) without any down-sampling for

small object detection.

• Manual anchor selection, object size is range from 15*15 to 70*70,

we select 8 square anchors, from 1.0 to 4.5 with interval of 0.5 at

feature map 1/16.

• Detection + classification, detect major categories(warning,

prohibitory, …) then classify its sub-category/meaning, and improve

the precision as well.

Use Case: Traffic Sign Detection in Night Environment

…

1280*448

80*20

Detection

regression(YOLO)

Cls+Bbox(grid index)

© 2016 International Business Machines Corporation 18

Use Case: Traffic Sign Detection in Night Environment

Mapping two accelerators (detector plus classifier) to a single-embedded FPGA (Zynq XC7Z045), timing
enclosure in 200MHz working frequency in this 28nm chip without sophisticated manual timing adjustment.

• Use the Kalman filter to do the on-line object tracking, using real-

time velocity information.

Network
Resource Utilization Complexity

(Giga oper)

Speed

(images/s)

Performance

(GOPS)

DSP

efficiencyLUT(218600) BRAM(545) DSP(900)

Detector 52921(25%) 278(51%) 604(67%) 11.2 18 201.6 83.7%

Classifier 27451(13%) 93(17%) 140(16%) 0.137 161 44.1 78.8%

Total 109223(50%) 473(87%) 744(83%) --- 27.7 245.7 82.3%

© 2016 International Business Machines Corporation 19

AccDNN on Cloud Service for Academic Research

We provide a try version with limited function in cloud
(https://crl.ptopenlab.com:8800/accdnn).
Anyone would like to have a try, please contact us for the account.

Step 1: Choose targeted hardware and

resource budget

Step 2: Upload DNN model file

(Caffe .prototxt file)

© 2016 International Business Machines Corporation 20

AccDNN on Cloud Service for Academic Research

Step 3: Analyze DNN, optimize resource

allocation and predict the performance of

default accelerator

Step 4: Upload the weights file

(caffe .caffemodel file) to generate the

Accelerator IP

© 2016 International Business Machines Corporation 21

AccDNN for IBM’s Product Roadmap

21

IBM Inference Engine : Analyze, Generate, and Optimize Deep Neural Network
Accelerator automatically

Our Goal: PowerAI Inference Engine is toolset to provide all these capabilities for inference automatically.

• Analyze DNN model and predict resource requirement, performance
• Convert and generate code packages based on different backend implementation for different HW architecture
• Optimize DNN model with different neural network compression technologies

© 2016 International Business Machines Corporation 22

Step 1: Upload data set and labeling

Step 3: Training/visualization

Step 2: Create new task, choose targeted embedded platform

In PowerAI Vision, we

use different neural

network for different

deployment needs.

HW device of FPGA.

(Demo video: https://ibm.box.com/s/um180x4nj0f8uyz246goagrvq8ukj144)

Released with IBM PowerAI Vision on Aug.17, 2018

© 2016 International Business Machines Corporation 23

Step 4: Click simulate deploy to deploy the trained model onto

GPU server for simulation testing

Step 5: Upload an image to do simulation testing

(on GPU server or FPGA server in future)

Allow user to do simulation testing

for the trained model on GPU server

Step 6: Click to convert and generate deployable

binary for FPGA device
Step 7: Generated binary is ready for downloading onto FPGA device

Download generated binary package

IBM PowerAI Vision Steps

© 2016 International Business Machines Corporation 24

Hardware Enablement (Edge Application)

Xilinx ZC706 Evaluation Board DeepRed, full SDK avaliable

© 2016 International Business Machines Corporation 25

Hardware Enablement (Data Center Application)

SNAP framework: Spend Time on Algorithms Not on Coding
https://github.com/open-power/snap

Process C

Slave Context

libcxl

cxl

SNAP

library
Job

Queue

Process B

Slave Context

libcxl

cxl

SNAP

library
Job

Queue

Process A

Slave Context

libcxl

cxl

SNAP

library
Job

Queue

Application on Host Acceleration on FPGA

Software Program

PSL/AXI bridge

DRAM
on-card

Network

NVMeAXI

Host

DMA

Control

MMIO

Job

Manager

Job

Queue

Quick and easy developing platform

Use High Level Synthesis tool to convert C/C++ to RTL, or directly use RTL

Programming based on SNAP library and AXI interface

AccDNN

Hardware Action

HDK:

CAPI

PSL

CAPI

© 2016 International Business Machines Corporation 26

Hybrid Extremely Low Bit-width Neural Network (ELB-NN)

This work has been published in FPL’2018, Dublin, Ireland

© 2016 International Business Machines Corporation 27

Sparse

Deep Neural Network Model Optimization --prior arts

Pruning, quantized representation and Huffman coding (2~3x)[1]

• Significantly reduce the model size, I/O bandwidth, and data transmission energy.

• Without loss of accuracy.

• Still requires high precision computation – not save computation too much

• Extra cost of sparse representation, unregulated computation, extra decoding effort.

Binary or ternary neural network (20x+) [2][3][4]

• Largely reduce the model size and I/O bandwidth.

• Extremely higher throughput

• Without multiplier, only use xnor plus popcount (only for binary)

• Performance of full binary network drops from 57.1 to 35.1%, Alexnet at

larger scale network.

• Still keep float precision of activations in ternary network to maintain

accuracy, which is not efficient in FPGA.

[1] Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016
[2] Courbariaux et al. “Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to +1 or -1”
[3] Rastegari et al. “XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks”
[4] Fengfu Li et al. “Ternary Weight Networks”

Binary

Theoretical peak performance (Xilinx XC7Z045)

© 2016 International Business Machines Corporation 28

FPGA on edge device is lack of computation resource, on-chip memory and
bandwidth because of the strict constraints on power budget, form factor, and cost.

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html#productTable

• Scarce DSP block, even 7045(900 DSPs) can only provide 720GOPS(INT8@200MHz) peak performance.

• Limited on-chip memory, results in frequent data swap.

• Limited DDR bandwidth, usually less than 32bits DDR3, even share the DDR width PS side.

Motivations

© 2016 International Business Machines Corporation 29

• ELB-NNs use lower bit-width of weights &

activations (less comp. & mem. demands)

• Embedded FPGAs deliver improved latency, energy

efficiency, and flexibility

• Could leverage the massive LUTs resource in FPGA,

DSP block won’t be the bottleneck

36.57

22.12

18.58

10.19 9.86

5.15

0.72 0.36
0

5

10

15

20

25

30

35

40

P
e
a
k
 P

e
rf

o
rm

a
n
c
e
 (

T
O

P
S

)

• How to maintain the accuracy with ELB quantization or tradeoff between accuracy and throughput?

• How to develop a FPGA design and accelerate ELB-NNs with high efficiency?

Theoretical peak performance for low precision (evaluated

on Xilinx XC7Z045, 200MHz)

ELB-NN neural networks adapt AI to edge-devices perfectly

Motivations

© 2016 International Business Machines Corporation 30

We need hybrid ELB-

NN solutions

Experimental results on Alexnet benchmark with various precision/bit-width

• Increasing the network complexity/scale to significantly
brings back accuracy

• Activation precision has more significant impact to the final
classification accuracy

• Promising accuracy with binary/ternary weights in mid-
layers

Motivations

© 2016 International Business Machines Corporation 31

C
o

n
v

0

C
o

n
v
1

C
o

n
v

2

F
C

0

F
C

 O
u

t

8bits input

4/8bits 4/8bits2bits(-1,0,1) 2bits(-1,0,1) 1bits
Differentiated Weights

16bits output2/4bits 2/4bits 2/4bits 2/4bits

C
o

n
v

B
a
tc

h
 N

o
rm

A
c
ti

v
a
ti

o
n

boost from 4bits to 5bits

activation func.

Ternary representation

…

• Use relatively higher precision in first or last layer, since it is more sensitive to accuracy but less convolutional operation.

Also its number of weights is relatively small, not won’t eat more one-chip memory and I/O bandwidth.

• Utilize the sign bit after the ReLU to improve the activation precision without affording any extra bit.

• Ternary representation provides tradeoff of memory bandwidth, logic resource, and accuracy.

Example of Hybrid ELB-NN

© 2016 International Business Machines Corporation 32

• Binary/ternary weights with scale factor

• Activation (clip & quantization)

Extended the caffe-Ristretto to support hybrid ELB-NN

Enhance the training stability and accuracy

Hysteresis PACT[1]

[1] PACT: Parameterized Clipping Activation for Quantized Neural Networks, https://arxiv.org/abs/1805.06085

How to Train a Hybrid ELB-NN

© 2016 International Business Machines Corporation 33

• Extended Alexnet- 8218 can reach up to 599.2 images/s, which surpasses the
baseline (Alexnet-8-8888) by 1.76x while still keeping the same accuracy.

• Significant reduction of 68% bandwidth resulting less power consumption. Half
of DDR hardware cost can be saved,

Experimental Results:

© 2016 International Business Machines Corporation 34

Comparison to other FPGA solution:

• [15] R. Zhao et al. Accelerating binarized convolutional neural networks with software-programmable FPGAs. In FPGA, 2017.
• [16] Y. Umuroglu et al. Finn: A framework for fast, scalable binarized neural network inference. In FPGA. ACM, 2017.
• [19] Fraser Nicholas et al. Scaling binarized neural networks on reconfigurable logic. arXiv:1701.03400, 2017.
• [5] N. Eriko et al. Accelerating binarized neural networks: Comparison of FPGA, CPU, GPU, and ASIC. FPT, 2016

• LUT efficiency(GOPS per kilo LUTs), outperforms the most efficient work in [16] by 13%, even if we use one
more bits for the activation and the code is automatically generated.

• The major reason is that the generated code is RTL level, and the PE is well optimized and also written in RTL.

© 2016 International Business Machines Corporation 35

325.3

208.8

124.8
109

71

0

50

100

150

200

250

300

350

AccELB
(4-8218)

AccELB
(8-8218)

AccELB
(4-8218-ext)

GPU-P4 GPU-P40

Power Efficiency(images/s/watt)

• A clear tradeoff between accuracy and efficiency is be observed.

• Extended Alexnet-4-8218 (the same accuracy as INT8) still outperforms the most efficient GPU (P4)

solution so far by 14%.

Comparison to GPU solution

© 2016 International Business Machines Corporation 36

Backup

© 2016 International Business Machines Corporation 37

Unique Requirements of AI Vision in Edge

• Very limited I/O bandwidth due to the power budget, cost, size, (usually 16/32bits DDR3)

• High resolution input, e.g. 720P/1080P, results in larger feature map size (can’t down-
sampling in some cases).

• Faster response, millisecond level latency

• No batching can be explored, any batching operation will introduce more latency.

• Task is usually simple, like detecting face, traffic sign,…

• In many cases, the objects are very small, such as the view from the drone.

© 2016 International Business Machines Corporation 38

A
X

I IC
A

X
I IC

D
M

A

(V
id

e
o

 s
tre

a
m

)

D
M

A

(A
c
c
e
le

ra
to

r)

IN
P

U
T

F
IF

O
D

N
N

A
c
c
e
le

ra
to

r

6
4
@

2
0
0
M

6
4
@

2
0
0
M

6
4
@

2
0
0
M

6
4
@

2
0
0
M

MIG&DMA

M
U

X

DDR3

32/64@1600MT/s

512@200M

HP0

HP1

A
X

I IC

GP0

User Space

Registers

(ctrl&status.)

R
e
g

is
te

rs

D
riv

e
r(R

D
/W

R
)

D
M

A
 D

riv
e
r

(V
id

e
o

 s
tre

a
m

 &
 A

c
c
e
le

ra
to

r)

P
re

p
ro

c
e
s
s
in

g

(re
s
iz

e
/tra

n
s
...)

P
o

s
t-p

ro
c

e
s
s
in

g

(N
M

S
, m

a
rk

,…
)

Video Queue

Accelerator Queue

D
e
te

c
te

d
 O

b
je

c
ts

 p
a

c
k

a
g

e

o
n

 C
A

N
 p

ro
to

c
o

l

C
A

N
 O

U
T

PL/FPGA PS/ARM
Accelerator Info.

Conf.&Bbox

Initial.&Config.

DNN Weights

720p/1080p

@60/30FPS

O
U

T
P

U
T

F
IF

OVideo out

P
re

p
ro

c
e
s
s
in

g

A Typical Video Embedded System for Edge Computing

• Can video frame be feed into accelerator directly to alleviate the bandwidth pressure of memory?

• Can we utilize the video transmission time of video frame to reduce the acceleration latency?

© 2016 International Business Machines Corporation 39

data

W
e
ig

h
t(o

d
d

)

W
e
ig

h
t(e

v
e
n

)

o
/e

 s
e
l

Accumulator

odd

even

fusion

Spatial Complementary paired sparse kernel

Even(╳) Odd(+)

Paired sparse kernel

© 2016 International Business Machines Corporation 40

1x1

convolutions

3x3

convolutions

5x5

convolutions

Filter

concatenation

Previous layer

3x3 max

pooling

1x1

convolutions

1x1

convolutions

1x1

convolutions

Inception

MobileNet

ShuffleNet

ResNeXt

Discussions

Adaptable.

Intelligent.

