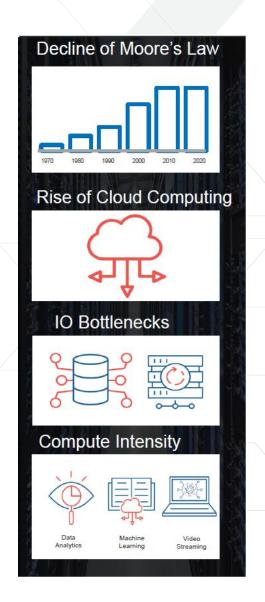


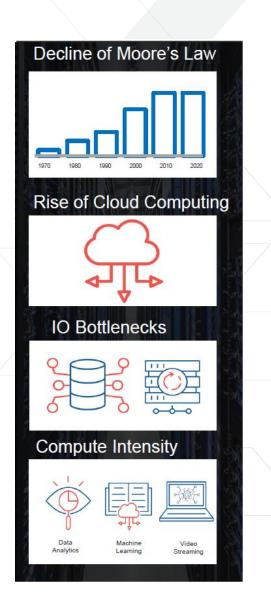
CCIX: Interconnect for Seamless Acceleration


Presented By

Name: Millind Mittal Title: Sr. Director of Architecture Date: Oct 1, 18

Key Drivers for Interconnect Technology

- > Decline of Moore's law forcing more heterogeneous compute
- General Purpose processors are not power efficient or cost effective for a class of workloads
- > 5G wireless applications requiring 10x more bandwidth, 10x lower latency by 2021
- Increase in distributed data forcing more network intelligence at faster data rates (10GbE -> 100GbE -> 400GbE)
- > New classes of applications require exponential growth in computation needs
 - → Requires moving beyond only General Purpose Processor based processing
 - → Key enabler for wide adaption of acceleration technologies is high performance interconnect with seamless data sharing model



CCIX Consortium Effort

> Advance IO Interconnect to enable seamless expansion of compute and memory resources beyond processor SoCs

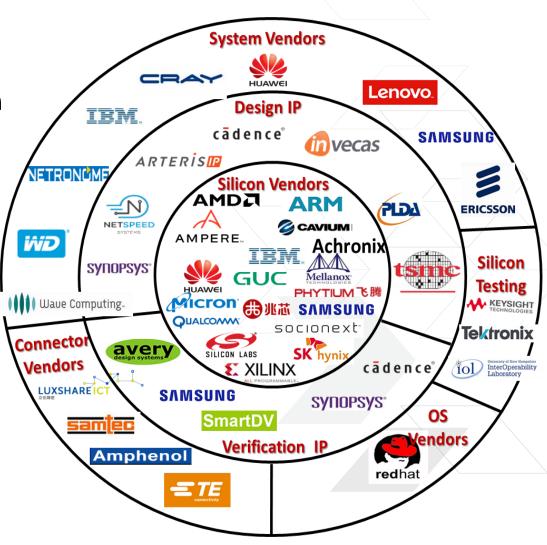
>> Accelerator SoCs to be like a NUMA node from Data Sharing perspective.

E XILINX.

CCIX Ecosystem Status Update

- > CCIX Base Spec 1.0 available.
- > Complete Ecosystem with CCIX-enabled Host, Accelerator devices and SCM memory expansion products rolling out

> CCIX Hosts:


- > ARM/Cadence/Xilinx collaboration A 7nm test Processor SoC providing CCIX interface
- Other Hosts with caching and Slave Agent / Memory Expansion support coming soon

> CCIX Accelerator / EP:

>> Xilinx VU3xP family CCIX-enabled FPGAs silicon available

> CCIX Memory Expansion

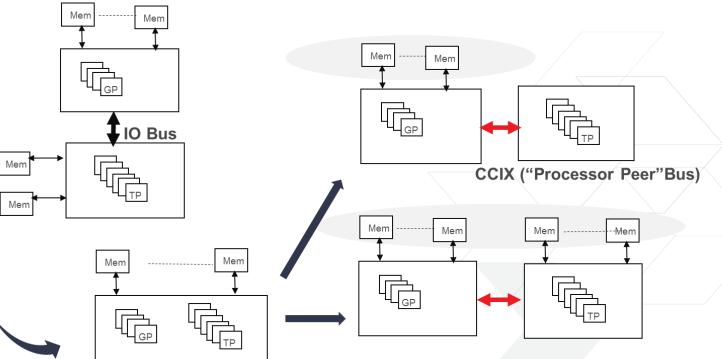
Leading SCM memory vendor driving CCIX Slave Agent / Memory Expansion use case

CCIX Roadmap and Milestones Update

> CCIX 1.1

- >> Support 32GT/s, can use PCIe Gen5 switch for fan-out and other CCIX topologies.
- >> Protocol enhancements to increase performance and reduce latency further
- >> Target 4Q2018 to 1Q2019

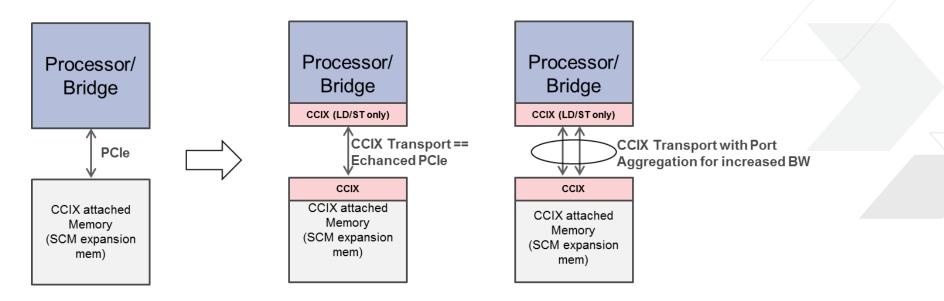
> CCIX 2.0


- >> Expands Seamless coherent data sharing and load/store access to across Multiple Nodes
- >> Support 56GT/s and higher
- >> Target End'2019

Use Case 1: Virtualized, Coherent Accelerators

- > Reduced data transfer latency
- > Improved fine grain data sharing
- > Simplified software dev., eliminates difficult debug issues
- Seamless offload of threads from general-purpose processors to accelerators
 - Preserves shared data-structures between the host and accelerator
 - No need to re-architect any shared data structures

Improved efficiency with true peer-processing



Use Case 2: Memory Expansion

> Multiple use cases evolving for external interconnect attached memory

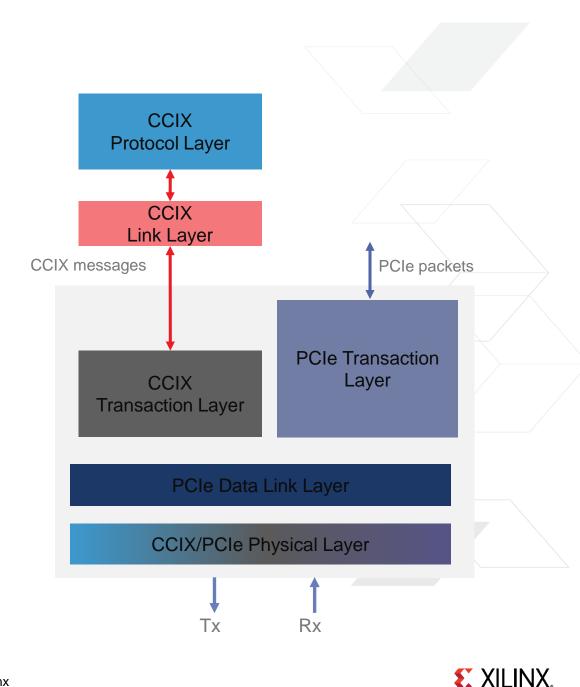
- >> Larger DRAM/SCM capacity with-in a "box"
- >> LD/ST to remote memory via bridging to a scale-out fabric
 - Opportunity for value-add functionality via external card solutions for remote memory
 - Overtime there is need for choices in the scale-out fabric for carrying native LD/ST
- >> Supports Memory Atomics over CCIX interface



Hardware Architecture

CCIX Layered Architecture

Protocol Layer

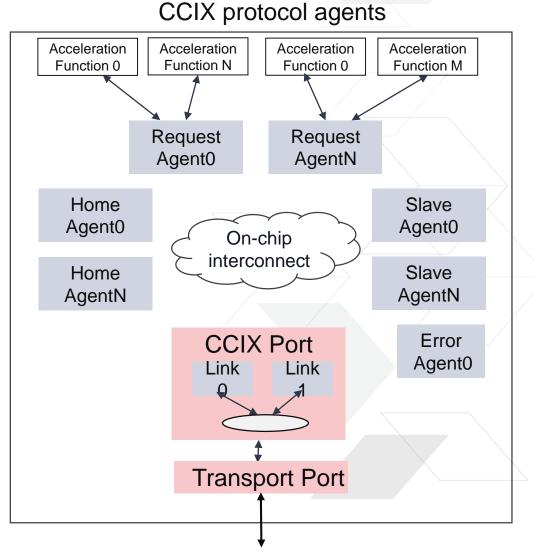

- Coherency protocol, memory read & write flows
- Full feature protocol
- Port aggregation for higher BW

Link Layer

- Formats CCIX messages for target transport
- Adds ability to pack and chain multiple messages to achieve higher efficiency

Transaction Layer

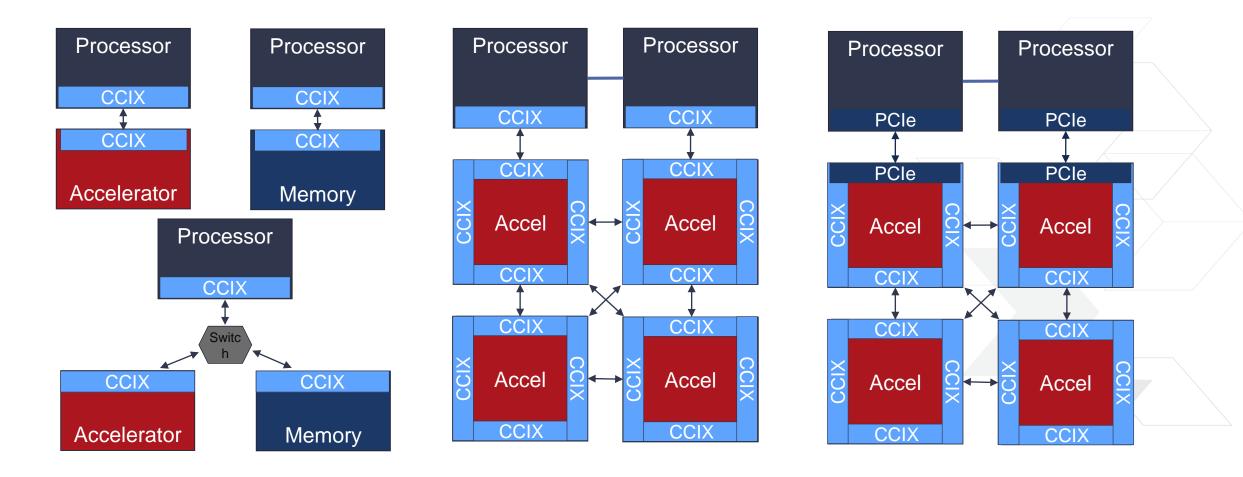
- Adds optimized packets, manages credit based flow control
- **Physical Layer**
 - Dual mode PHY to support extended data rates


CCIX coherency layer architecture model

> Portable protocol to other transports

Support for port aggregation, multiple link agents

> CCIX agent types:


- Request Agent (RA) single (implementation specific) function or proxy for multiple functions
- Home Agent (HA) point of coherency for a given address
- >> Slave Agent (SA) used for memory expansion
- >> Error Agent (EA) receives and processes protocol error messages

System Topology Examples

Direct attached, daisy chain, mesh and switched topologies

Software Architecture

Towards a True Driverless Model

- > Driver or OS involvement in Data Movement adds latency and processing overhead
 - >> Move to driverless model for data movement
- > Traditional DMA approach is to provide a special kernel driver for every unique accelerator
 - Requires skilled kernel developers (a driver for each accelerator), failure mode is catastrophic (system crash/downtime)
- > CCIX capable devices behave similarly to nodes in existing NUMA systems
 - Memory based approach leverages existing Operating System capabilities
 - >> Enabled by coherent shared virtual memory it's all "just memory"
- > OS enablement required, mostly limited to kernel infrastructure
 - >> e.g. OS driver for power management, error handling, etc.
 - >> Lightweight OS impact for individual accelerator drivers

Management

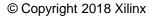
> Runs management interface over standard PCIe interface

- > Leverage PCIe support for address translation service
 - CCIX adds extension to carry additional memory attributes and to address translation invalidation performance issue
- > Leverages PCIe signaling mechanism

E XILINX.

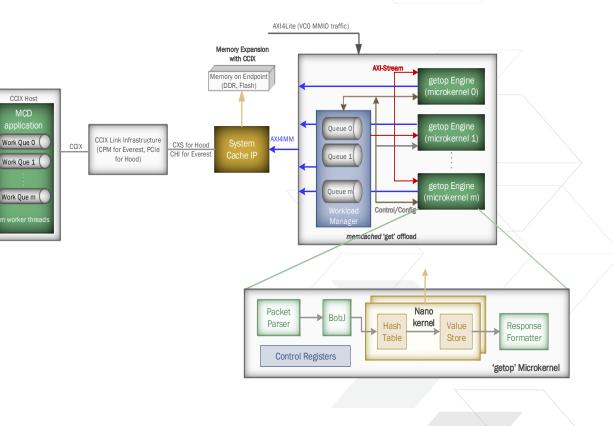
CCIX Consortium SW activities

- > CCIX capability discovery and configuration
- > UEFI updates to support Peripheral attached memory and heterogeneous NUMA platforms
- > ACPI extensions
- > CCIX common management driver
- > Management flows Hot plug, Power management
- > RAS error reporting and handling its integration into Kernel level
- > Kernel enhancements
 - >> Memory management
 - >> Long term scheduling accelerator resource



E XILINX

Use Case Demos


KVS Seamless Acceleration

> CCIX Value Proposition

- Leave 'Control" operations (set, delete, ..) on the host- offload "fast-path" operations (Get) to the accelerator
- Leverage contention data-structure as-it-is between host and accelerator
 - High through-put Independent of the size of the request
 - In presence of longer latency memory pool (e.g. use of SCM or DRAM expansion through peripheral device.
 - Tolerant to Address Translation latency overhead in presence of TLB missese
 - Future work- support for memory expansion
 - Hash table with the accelerator (host can share same table)
 - Zero-overhead Zero-copy Tx
 - Seamless offload of Linux networking (self hosted NIC with fast-path termination)
 - Total throughput benefit in the range of 2x-10x

> Demo Performance Data

- Measured reduction in CPU utilization for application processing due to all of Get-op offload – 75% CPU reduction
- Increase throughput for multi-gets with almost increase in CPU utilization
 - Show-cased 2x increase in throughput without any increase in CPU utilization for application layer threads when number of Get-ops is increased from 1x to 4x

XILINX.

Successful Hardware Demos

- > ISC 18- Seamless Acceleration of KVS
- > SC17 Accelerated OVS

Xilinx Devices with CCIX Support

16nm Ultrascale + (4th Gen) ES Sample: May, 2018

- > 4th Gen 3D IC
 - 3 16nm FPGA die
 - 2 HBM2 Stacks
- A PCIe-Gen3x16 controllers with CCIX transport support; Each also works as PCIe-Gen4x8
- > Cache is implemented in Soft IP
 - upto 4MB of cache; upto 8 accelerator functions.
 - IP for Slave Agent (memory expansion) support

2018

7nm (5th Gen) ES

Hardened Coherency Blocks

E XILINX.

- > CCIX enables broader use of acceleration technologies
- > CCIX Base specification is available
- > CCIX is supported by broad eco-system- both host and accelerator devices in under development with ES becoming available in near future
- > Active work underway to enable SW eco-system and showcase use cases
- > Go to <u>www.ccixconsortium.com</u> for learn more about CCIX and to join CCIX eco-system.

XILINX DEVELOPER FORUM

© Copyright 2018 Xilinx