
Presented By

Pat McGarry, BlackLynx, VP Engineering

Neil Tender, BlackLynx, Senior FPGA Engineer

www.BlackLynx.tech

October 2, 2018

SDAccel Development Environment: FPGA Acceleration

Performance and Ease of Use Aren’t Mutually Exclusive

BlackLynx

▪ High Performance Analytics at any scale,

for any data type

▪ Seamless integration to high-level

application stacks leveraging open

software APIs (C, C++, Java, Python,

ODBC, JDBC, REST, Spark, and more)

▪ Novel software-parallel control framework

for automated, intelligent heterogeneous

acceleration (for example, via FPGA

offload by way of SDAccel)

▪ Deployment platform agnostic: in the

cloud, data center, and/or at the edge

▪ AI/ML-based observation anywhere in the

pipeline

▪ Customer sectors are national security,

global telecommunications, and large

financials

Who are we? What do we do?

BlackLynx SDAccel Platforms Supported

Example BlackLynx Use Case – Pattern Matching

˃ Fixed-size input data, variable-size output data

˃ Several different pattern matching algorithms

˃ Legacy RTL code

SDAccel RTL Wrapper

SDAccel Execution Model

Software Emulation –

OpenCL C kernels

Hardware Emulation

compiled or native RTL kernels (RTL
simulation)

Hardware

actual implementation (synthesis/place
and route) to run on target hardware

The SDAccel environment supports three flows:

RTL Kernels

˃ To support legacy RTL primitives, we built a dedicated RTL kernel and wrapper to provide an adaption layer

˃ RTL Kernel Wizard automatically creates example design (RTL source and test bench)

BlackLynx RTL primitives can now be seamlessly dropped into the RTL kernel

blacklynxprim_kernel.v

blacklynxprim_kernel_control_s_axi.v
{wizard generated}

ocl_wrap_top.sv

addr width = 64
data width = 512

master
slave

32
master

slave

Notes :
(1) Gray blocks are automatically generated by the RTL Kernel Wizard
(2) Orange Block is custom code

md_axi[n]NUM_DATA_INTERFACESData Path
(AXI)

OCL Arguments
and Control

(AXI)

clocks

SDAccel Build Example

shell

(static region) DDR bank

interfaces

kernels

(dynamic region)

Xilinx XCVU9P

Data Transfer Performance (between host and kernels)

˃ Getting the best performance for variable-size output data required careful consideration of

host/kernel memory transfer approach:

OpenCL memory transfer methods as implemented in SDAccel

˃ OpenCL mechanism for control and handshaking between host and kernels is restrictive

Output data size is not known upfront, so buffers must be allocated for maximum possible size

Statistics and other metadata from the kernel (e.g. output data size) must themselves be sent via buffers

API call Pros/Cons Best for:

enqueueReadBuffer/

enqueueWriteBuffer

Flexible but slow small output data

enqueueMigrateMemObject Fast, uses pinned memory, but requires allocating

entire output buffer upfront

large output data

enqueueMapBuffer Fast, uses pinned memory, but requires allocating

entire output buffer upfront, OpenCL function returns

host pointer

large output data

Data Transfer Performance (cont’d)

Chunk 1
Chunk 2
Chunk 3
Chunk 4
Chunk 5
Chunk 6

. . .

Allocate Input Buffers

Copy Local Bus and Input Buffers from
Host to Global Memory

Kernel Execution

Copy Metadata Buffer from Global
Memory to Host

Copy Output Buffers from Global
Memory to Host

. . .

5-stage pipeline

To get best I/O performance, use pipelining to overlap memory data transfers and

kernel execution:

Data Transfer Performance (cont’d)

˃ SDAccel is best suited for applications that are compute-bound, not I/O bound.

˃ In the best case, the PCIe bus caps out at around 9GB/s. (lower in practical uses)

Xilinx host_global_bandwidth example running on VCU1525 board:

OpenCL migration BW host to device: 3.91702 MB/s for buffer size 64 with 1024 buffers

OpenCL migration BW device to host: 4.0294 MB/s for buffer size 64 with 1024 buffers

OpenCL migration BW host to device: 15.8509 MB/s for buffer size 256 with 1024 buffers

OpenCL migration BW device to host: 16.5981 MB/s for buffer size 256 with 1024 buffers

OpenCL migration BW host to device: 32.2082 MB/s for buffer size 512 with 1024 buffers

OpenCL migration BW device to host: 35.1914 MB/s for buffer size 512 with 1024 buffers

OpenCL migration BW host to device: 63.8203 MB/s for buffer size 1024 with 1024 buffers

OpenCL migration BW device to host: 67.4536 MB/s for buffer size 1024 with 1024 buffers

OpenCL migration BW host to device: 256.492 MB/s for buffer size 4096 with 1024 buffers

OpenCL migration BW device to host: 257.848 MB/s for buffer size 4096 with 1024 buffers

OpenCL migration BW host to device: 974.066 MB/s for buffer size 16384 with 512 buffers

OpenCL migration BW device to host: 996.388 MB/s for buffer size 16384 with 512 buffers

OpenCL migration BW host to device: 6820.12 MB/s for buffer size 1048576 with 8 buffers

OpenCL migration BW device to host: 7759.46 MB/s for buffer size 1048576 with 8 buffers

OpenCL migration BW host to device: 6159.77 MB/s for buffer size 1048576 with 64 buffers

OpenCL migration BW device to host: 8160.14 MB/s for buffer size 1048576 with 64 buffers

OpenCL migration BW host to device: 6764.79 MB/s for buffer size 1048576 with 256 buffers

OpenCL migration BW device to host: 8677.38 MB/s for buffer size 1048576 with 256 buffers

OpenCL migration BW host to device: 6719.87 MB/s for buffer size 2097152 with 8 buffers

OpenCL migration BW device to host: 7376.67 MB/s for buffer size 2097152 with 8 buffers

OpenCL migration BW host to device: 6997.59 MB/s for buffer size 2097152 with 64 buffers

OpenCL migration BW device to host: 8177.87 MB/s for buffer size 2097152 with 64 buffers

OpenCL migration BW host to device: 7534.95 MB/s for buffer size 2097152 with 256 buffers

OpenCL migration BW device to host: 8438.96 MB/s for buffer size 2097152 with 256 buffers

OpenCL migration BW host to device: 7488.66 MB/s for buffer size 16777216 with 64 buffers

OpenCL migration BW device to host: 9095.59 MB/s for buffer size 16777216 with 64 buffers

OpenCL migration BW host to device: 7465.79 MB/s for buffer size 268435456 with 4 buffers

OpenCL migration BW device to host: 7596.66 MB/s for buffer size 268435456 with 4 buffers

OpenCL migration BW host to device: 7430.14 MB/s for buffer size 536870912 with 2 buffers

OpenCL migration BW device to host: 9009.48 MB/s for buffer size 536870912 with 2 buffers

Performance and Capacity

˃ # Kernels

Instantiate multiple parallel kernels to maximize performance

˃ DDR Memory Interfaces

Each kernel can be assigned to any of the 4 interfaces

Utilizing more than one DDR interface improves routability and can help with
I/O performance

˃ Clock frequency

SDAccel attempts to achieve a user-specified target clock frequency, but
backs down automatically if closure cannot be achieved

Best to experiment with achievable clock frequencies and choose a
reasonable target

8-kernel design on AWS F1

Design Optimization and Debugging

SDAccel provides a number of features to help the developer optimize the design and

debug issues:

System estimate, profile summary, application timeline, waveform view, guidance

At BlackLynx, we created a test loopback primitive to help verify the integrity and

performance of the control and dataflow, which proved extremely useful.

Application timeline

SDAccel Profiling and Optimization Guide, UG1207

Onboarding examples

Xilinx provides a full set of example reference designs

˃ Available for download from GitHub

˃ Complete source code, build files, scripts

˃ Covers a wide range of features SDAccel features

Examples:

˃ OpenCL acceleration algorithms

K-means, Smith-Waterman

˃ Data transfers

˃ RTL kernels

˃ OpenCL kernel optimization techniques

˃ Debugging/profiling

Summary

˃ SDAccel extends the relevance of heterogeneous computing to seamlessly target FPGA-enabled

cloud instances, hardware in the datacenter, and edge devices

˃ Designs are portable across a number of available platforms and are easily scaled to provide

flexibility in trading of performance with size

˃ SDAccel makes designing for FPGAs easier and faster by supporting high level languages

(OpenCL/C++) while preserving the ability to use customized RTL designs

˃ We have shared our experiences and recommendations on how to achieve the best results when

implementing SDAccel-based designs

BlackLynx is moving full speed ahead leveraging SDAccel to accelerate our

heterogeneous computing acceleration flows.

http://www.BlackLynx.tech

