
© Copyright 2018 Xilinx

Presented By

Sumit Roy

Senior R&D Director, SDAccel, SDSoC, HLS

October 2nd, 2018

Develop Computational Storage

Applications using SDAccel

© Copyright 2018 Xilinx

Agenda

˃ Introduction

SDAccel Benefits

Computational Storage Programmer’s View

˃ What to accelerate

3 rules of the game

˃ How to accelerate

˃ Summary

© Copyright 2018 Xilinx

Why Use SDAccel For Computational Storage Acceleration?

˃ Platform and runtime library optimized for performance

˃ Choice of HLS or RTL for acceleration kernel

˃ Dedicated visualization, profiling and debug Tools

˃ Optimized libraries

˃ Portability: Easy porting from existing SDAccel applications

Performance – Productivity – Portability

© Copyright 2018 Xilinx

Computational Storage – Overview
>> 4

Kernel

Buffer1 Buffer2

Buffer2’Buffer1’

Host.exe

PCIE BUS

Kernel

Buffer1 Buffer2

Buffer2’

Host.exe

PCIE BUS

Key benefit : Avoiding extra copies into Host DDR

© Copyright 2018 Xilinx

Computational Storage Benefit

Computational Storage Solution avoids copying to x86 DDR

SSD-x86 DDR func1 func2CPU

Without acceleration

func1

SSD-x86 DDR func2CPU

FPGA

With FPGA compute acceleration (offload compute)

Host to

FPGA-DDR

X86

DDR

func1

func2CPU

FPGA

With FPGA computational storage acceleration (offload compute & I/O)

SSD to

FPGA DDR
X86

DDR

© Copyright 2018 Xilinx

Agenda

˃ Introduction

SDAccel Benefits

Computational Storage Programmer’s View

˃ What to accelerate

3 rules of the game

˃ How to accelerate

˃ Summary

© Copyright 2018 Xilinx

Developing Applications Using SDAccel

SDAccel Application Timeline View

˃ Start with the end in mind conceptualize system architecture

˃ Use visualization and guidance tools confirm and converge

I want to achieve…

© Copyright 2018 Xilinx

Rule #1 – Remember Amdahl’s Law

˃ Consider overall performance, not just individual functions

˃ When working “top-down”, identify performance bottlenecks in the application

Use profiling tools, analyze the “roof line” of a Flame Graph

˃ Target accelerators that will impact end-to-end performance of the application

func1 func2 func3 func4CPU

It’s better to accelerate

func2 by 2x…

…than to accelerate

func3 by 50x !

© Copyright 2018 Xilinx

Rule #2 – Target Tasks with high % of I/O time

˃ Look for functions with where {read/write SSD time} is significant % of total time

Good: file-compression– reading file from SSD to host DDR significant compared total time

Bad: Video-compression – HEVC, VP9 encoding significantly larger than streaming video

˃ Prefer functions that are filters, encoders

Increases overall bandwidth of the PCIe throughput to x86

func1

SSD-x86 DDR func2CPU

FPGA FPGA-DDR
X86

DDR

Read-time

significant %
Output smaller, giving

higher PCIe b/w

© Copyright 2018 Xilinx

rew

Rule #3 – Balance Compute and Communication

˃ Target applications with streaming data

Task-level, Data-level streaming like Apache Spark

˃ Balance throughput of data-movement and computation

Data-movement throughput should be high and similar to compute

Func1FPGA
SSD-

FPGA-DDR

X86

DDR

Read B/w similar to

compute b/w Output smaller, giving

higher PCIe b/w

Software Pipelining

w: write inputs from SSD to FPGA

e: execute kernel device function

r: read outputs back to x86 host

rew

rew

© Copyright 2018 Xilinx

When to USE

– PCIe b/w is bottleneck

– Time to read from SSD significant % of total

FPGA-Based Computational Storage Acceleration

When May Not be beneficial

– Small problem size

– Additional preprocessing done on host

When NOT beneficial

– Little to no parallelism

• Algorithm is highly sequential over multiple data

– Compute heavy with very small data-transfer overhead

© Copyright 2018 Xilinx

Agenda

˃ Introduction

SDAccel Benefits

Computational Storage Programmer’s View

˃ What to accelerate

3 rules of the game

˃ How to accelerate

˃ Summary

© Copyright 2018 Xilinx

Step 1: Move data directly from SSD to FPGA

Porting Existing Compute Acceleration Apps

Step 2: Move pre/postprocess from Host to FPGA

Step 3: Target multi-board for max. performance

Step 4: Multi-process if FPGA throughput is higher than single application

throughput

© Copyright 2018 Xilinx

Step 1: Move data directly from SSD to FPGA

˃ Source file needs to be opened with O_DIRECT to

bypass page cache

Source_file_fd = open(path, O_RDWR | O_DIRECT);

Read(source_file_fd, target_ptr, size);

Success!

˃ Restrictions for O_DIRECT read() from file

Read() can only be done in block size unit with block size
aligned buffer pointer

˃ Restrictions for O_DIRECT write() to file

Write() can only be done in block size unit with block size
aligned buffer pointer

Call fallocate() to allocate blocks in file system before write,
or page cache may kick in implicitly

˃ Kernel may need to be modified to iterate on data in

block-size chunks

PCIE BUS

Target

libxrt

nvme xocl

Target_ptr

mmap()

read()

ext4
Target_ptr

Host.exe

Target

© Copyright 2018 Xilinx

Step 1: Move data directly from SSD to FPGA
No Preprocess

˃ Read to x86 buffer from file ˃ Read to DDR from file

/* Allocate BO */

cl_mem_ext_ptr_t clmem_ext = { 0 };

clmem_ext.flags = get_bank_flag(bank);

target = clCreateBuffer(context,

CL_MEM_EXT_PTR_XILINX | CL_MEM_READ_WRITE,

size,

&clmem_ext, &err);

/* Read source data from file */

target_ptr = clEnqueueMapBuffer(cmdq, target,

CL_TRUE, CL_MAP_WRITE | CL_MAP_READ,

0, size, 0, NULL, NULL, &err);

source_file_fd = open(path, O_RDONLY);

read(source_file_fd, target_ptr, size);

clEnqueueMigrateMemObject(…, target,…);

/* Kick off kernel */

setKernelArgAndExecKernel();

/* Allocate BO */

cl_mem_ext_ptr_t clmem_ext = { 0 };

clmem_ext.flags = get_bank_flag(bank) | XCL_MEM_EXT_P2P_BUFFER;

target = clCreateBuffer(context,

CL_MEM_EXT_PTR_XILINX | CL_MEM_READ_WRITE,

size /* Multiple of blk size of FS */,

&clmem_ext, &err);

/* Read source data from file */

target_ptr = clEnqueueMapBuffer(cmdq, target,

CL_TRUE, CL_MAP_WRITE | CL_MAP_READ,

0, size, 0, NULL, NULL, &err);

source_file_fd = open(path, O_RDONLY | O_DIRECT);

read(source_file_fd, target_ptr, size);

clEnqueueMigrateMemObject(…, target,…);

/* Kick off kernel */

setKernelArgAndExecKernel();

© Copyright 2018 Xilinx

Step 2: Move Pre/Postprocess to FPGA

˃ Applications may have pre/postprocessing functions
of data read from SSD

Accelerate function to FPGA to avoid copy into host

˃ PostgreSQL: preprocess
Table is read in 2MB block size in a loop

Preprocess relevant rows and sends data to FPGA

˃ LZ4 : postprocess
LZ4 compression kernel creates hole in the data layout

Postprocess compacts the data

func2

SSD-x86 DDR func3CPU

FPGA FPGA-DDR
X86

DDR

func1

4B Blk1

hdr

4B Blk2

hdr

…….
4B Blk8

hdr

LZ4 Compressed Data

Packed Compressed Data

4B header

CPU

FPGA

© Copyright 2018 Xilinx

Step 3: Improve performance using multi-board

˃ Single FPGA acceleration does not

saturate PCIe b/w
Application output uses 2GB/s for 1 card

PCIe x16 has 16GB b/w

˃ Increase performance by multiple

folds using multi-board
Attach 8 cards to get 8X performance
improvement

˃ Steps for replicating across boards

Open all FPGA cards and NVMe
devices

Pair NVMe device with corresponding
FPGA

Ensure that data used by FPGA is resident
on paired NVMe device

Host

RAM

FPGA

Accel 8

DDR8

NVMe8

PCIe Switch

X16

X4 X4

FPGA

Accel 1

DDR1

NVMe1

X4 X4
X4 = 4GB/s

X16 = 16GB/s

Host CPU

Storage

Application

© Copyright 2018 Xilinx

Step 4: Multiple Applications

˃ Supports multiple processes using 1 or more
device concurrently

˃ LZ4 over PCIe gen3x16 supports 16 GB/s
compression rate

Can feed 8 instances of application requiring 2GB/s
compression data

˃ Application
Create 1 or more CU per FPGA device

Runtime grants CU to a process in a first come first
serve

Processes using same application is scheduled in a
round-robin

SSD can be shared between all the processes

Application needs to ensure different processes do
not modify the same file at same time

Device running app1

CUa CUb

Px

app1

Py

app1

Pz

app2

Exclusive
Shared

Shared

UUID1

reference

count

Granted access

to device

Granted access

to device
Denied access

to device

© Copyright 2018 Xilinx

Agenda

˃ Introduction

SDAccel Benefits

Computational Storage Programmer’s View

˃ What to accelerate

3 rules of the game

˃ How to accelerate

˃ Summary

© Copyright 2018 Xilinx

Summary

˃ Computational Storage Platform brings compute close to data, thereby improving

performance, reducing power

˃ SDAccel provides productive way to develop new applications or port existing

compute accelerated applications

˃ Considering system-level architecture is key to developing successfully

accelerated application

© Copyright 2018 Xilinx

© Copyright 2018 Xilinx

Getting Started is Easy

˃ SDAccel Tutorials for U200 and VCU1525

˃ www.github.com/Xilinx/SDAccel-Tutorials

˃ On-Demand Developer Labs for AWS F1

˃ https://github.com/Xilinx/SDAccel-AWS-F1-Developer-Labs

˃ Free trial of the Nimbix FPGA Developer Program

˃ https://www.nimbix.net/fpga-developer-program/

Learn and practice how to accelerate applications with FPGAs

https://github.com/Xilinx/SDAccel-Tutorials/blob/master/README.md
https://github.com/Xilinx/SDAccel-AWS-F1-Developer-Labs/blob/master/README.md
https://www.nimbix.net/fpga-developer-program/

© Copyright 2018 Xilinx

SDx value proposition: Improve EoU

Deploy Applications

Cloud (Compute) On Premises (Compute) Storage/Network

Develop applications

Virtex Ultrascale+ VU9P Zynq Ultrascale+ MPSoC

Leverage Applications

© Copyright 2018 Xilinx

SDAccel: Faster path to FPGA Acceleration

>> 24

Debugging Profiling

Libraries

Platform

Runtime

Compiler

C C++ OpenCL

RTL

Optimized Framework

for Acceleration

Accelerator Kernel

Compiler
Accelerator Kernel

Compiler

SDAccel enables performance, productivity and portability

© Copyright 2018 Xilinx

P2P Across FPGA and NVMe SSD – Through Filesystem

˃ Write Non-P2P buffer to file

/* Allocate BO */

cl_mem_ext_ptr_t clmem_ext = { 0 };

clmem_ext.flags = get_bank_flag(bank);

source = clCreateBuffer(context, CL_MEM_EXT_PTR_XILINX |

CL_MEM_READ_WRITE, size, &clmem_ext, &err);

/* Kick off kernel */

setKernelArgAndExecKernel(…);

/* Write result back to file */

clEnqueueMigrateMemObject(…, source,…);

source_ptr = clEnqueueMapBuffer(cmdq, target, CL_TRUE, CL_MAP_READ

| CL_MAP_WRITE, 0, size, 0, NULL, NULL, &err);

target_file_fd = open(path, O_CREAT | O_WRONLY);

write(target_file_fd, source_ptr, size);

˃ Write P2P buffer to file

/* Allocate BO */

cl_mem_ext_ptr_t clmem_ext = { 0 };

clmem_ext.flags = get_bank_flag(bank) | XCL_MEM_EXT_P2P_BUFFER;

source = clCreateBuffer(context, CL_MEM_EXT_PTR_XILINX |

CL_MEM_READ_WRITE, size /* Multiple of blk size of FS */, &clmem_ext, &err);

/* Kick off kernel */

setKernelArgAndExecKernel(…);

/* Write result back to file */

clEnqueueMigrateMemObject(…, source,…);

source_ptr = clEnqueueMapBuffer(cmdq, target, CL_TRUE, CL_MAP_WRITE |

CL_MAP_READ, 0, size, 0, NULL, NULL, &err);

target_file_fd = open(path, O_CREAT | O_WRONLY | O_DIRECT);

fallocate(target_file_fd, ..., size);

write(target_file_fd, source_ptr, size);

ftruncate(target_file_fd, actual_size);

>> 25

© Copyright 2018 Xilinx

SDAccel: Faster Path to FPGA Acceleration

High Performance Platform
and Runtime Library

Advanced FPGA
Compiler

Productive IDE &
Optimized Libraries

User
Onboarding

