
© Copyright 2018 Xilinx

Presented By

Name Adam Malamy

Title Co-founder & VP Technology

Date October 2 2018

NGCodec: Using High Level Synthesis and SDAccel to Develop Best-in-class
HEVC/VP9 Video Compression

© Copyright 2018 Xilinx

NGCodec Product

FPGA based Video Compression

2.1M lines HW Verilog RTL source code

331K lines HW C++ source code

128K lines HW C++ verification code

87K lines algorithmic reference model

x.265 very slow ~ 1 frame/sec

NGCodec HEVC 60 frames/sec and better VQ

Similar results for NGCodec VP9

© Copyright 2018 Xilinx

Real Time Cloud Video Transcoding

e.g.

© Copyright 2018 Xilinx

Value of HW Acceleration

Bandwidth and storage costs

(Service provider CDN & consumer data plan)

Quality of experience

(Startup time, visual quality, stalls)

Operating Expenses

© Copyright 2018 Xilinx

NGCodec Mission

To own Cloud Video Encoding

● Based on FPGA acceleration, with no load on host CPU

● Provide best VQ, latency, channel density, cost per RU

● Support all major video standards (AVC, HEVC, VP9, AV1)

● Make our solutions look like software encoders

● Deliver the same VQ for live as slow off-line SW encoders

Partners:

© Copyright 2018 Xilinx

Encoder Basic Stats

Layout

Device Virtex UltraScale+ 9 (VU9P)

Capacity 1182240 LUTs 6840 DSPs 4320 BRAMs 960 URAMs

Used 461038 LUTs 2736 DSPs 1824 BRAMs 698 URAMs

Frequency 200MHz Power ~20W

Performance 1080p60 real time encoding

DSA

© Copyright 2018 Xilinx

RTL Top Level

Use of HLS in Design Flow

● 12 Major design components written HLS

● 10 or 15 more smaller HLS modules

● Top level of design is Verilog RTL

● Fifos, Memories, module start/done logic in RTL

HLS Block HLS BlockRTL

mem
Ping

Pong

buffer

ap_done
ap_start

FIFO

© Copyright 2018 Xilinx

HLS Design Methodology

● Everything in Green is in

C/C++

● Everything in Yellow is

handled in vivado_hls

● Reduced design time
○ After learning curve

● Reduced verification time

● Reduced EDA costs

● Reduced staffing

requirements
○ Especially for verification

Modular

Bit-accurate

Model

HLS

Bit-accurate

Model

Equivalence

Checking

RTL Model

FPGA

Implementation
Top Level RTL

Simulation

Functional

Testing and

Coverage

Debug Flow
Architecture

Spec

μarchitecture

Specs

Equivalence

Checking

© Copyright 2018 Xilinx

FPGA

What is SDAccel?

DSA*
(Shell)

Kernel

DDR I/FPCIe I/F

AXI Master for

DDR transactions

AXI Lite control bus

for register configuration

● Designed for PCIe

interface to FPGA

accelerators

● DSA is custom per

board and handles

all I/O - hardware

abstraction

● Kernel is the

Designer’s IP and

can be used across

boards

*Device Support Archive

© Copyright 2018 Xilinx

SDAccel Advantages for NGCodec

● Our business is cloud-based video encoding

● We have three major deployments so far, all with

different PCIe hardware

● We can use common encoder kernel, i.e. a

common design, for all boards

● Reduces board-specific debug by 90%
○ Differences like DDR frequency still remain

© Copyright 2018 Xilinx

Some Problems with SDAccel

● DSA is large - occupies ½ SLR, 16% of VU9P

● Restricts visibility into Microblaze

○ No run-time debugging

○ We do our debugging first in a non-SDAccel

build

© Copyright 2018 Xilinx

Next Steps for NGCodec

● Currently our encoder can encode 1080p60 in real

time and occupies 50% of a VU9P

● Next step - double the throughput - 2x1080p60 in

real time on the VU9P

○ With the same quality

● How do we accomplish this?

© Copyright 2018 Xilinx

Method 1 - Run twice as fast

flipflop

logic

logic

flipflop

flipflop

200 MHz Design

Original

flipflop

logic

logic

flipflop

flipflop

400 MHz Design

Redesigned

logic

flipflop

● Change pipelining to run

modules at 400MHz

rather than 200MHz

● Works well on modules

with no feedback loop

● More optimally uses

DSP and BRAM

resources

● HLS is very good at this

type of redesign

© Copyright 2018 Xilinx

Method 2 - Process 2x data at 200MHz

flipflop

logic

logic

flipflop

flipflop

● Some designs have

feedback loop, cannot

start calculation n+1

until n completed

● Increasing clock

frequency does not help

● But can be clever and

process two

independent sets of

data in the same time as

processing one

● HLS is not so good at

this type of acceleration

logic

flipflop

logic

logic

flipflop

flipflop

logic

Result n

Input n+1

© Copyright 2018 Xilinx

Designing with HLS vs. Designing with RTL

● Vivado_HLS reduces design

time and verification time

● 90% of the time it is a benefit

once you become proficient

with the tool

● There is a level of complexity

at which old-fashioned RTL

design still wins out

○ Max frequency

○ Min resources

○ Complicated

dependencies

© Copyright 2018 Xilinx

Adaptable.

Intelligent.

Thank You For Attending

