
Presented By

Feng Tian

Founder

Deepgreen MPP with FPGA:

A supercharged Greenplum Data Warehouse solution

It’s Time for a complete rewrite

˃ New Application

˃ Rich Data

Text

IoT, Geospatial

Media

˃ Intelligent Data

Query getting more complex

Geospatial

Machine learning/Data mining

AI/Deep learning

Complete Rewrite

Hardware Trend

CPU has peaked,

FPGA has more room

Storage Hierarchy

➢ Big memory

➢ SSD

➢ Lots of bandwidth

Network

10, 100 GigE

Deepgreen MPP Database

˃ MPP (Massively Parallel Processing) shared nothing data warehouse

˃ Based on the open source Greenplum Database, 100% compatible

˃ Complete new query execution engine (LLVM JIT, SIMD)

˃ On premise and in clouse (AWS)

˃ Adding FPGA

A New Golden Age for Computer Architecture

˃ Domain Specific Hardware/Software Co-Design

˃ Enhanced Security

˃ Open Instruction Set

˃ Agile Chip Development

Putting FPGA In Deepgreen

Challenges Our Approach

➢Memory is big, but not big enough

➢Throughput vs Latency

➢Multi-CPU/Core

➢Multiuser environment

➢ Identify the bottleneck

➢New algorithm tuned for FPGA

➢Offload to FPGA, none preemptive

➢XLIW: eXtra Long Instruction Word

XLIW: eXtra Long Instruction Word

Kernel

K

K

XLIW: Hasher

Data, Data, Data …

Reslut R R

Result R R

Result R R

XLIW XLIW XLIW

XLIW XLIW XLIW

XLIW XLIW XLIW

XLIW: Hasher

Data, Data, Data …

Use Case 1: Hash Join

Hash Join XLIW for Hash Join

➢ Select * FROM A JOIN B ON A.x = B.x and A.y =

B.y …

➢ One of the most important, expensive operation in

OLAP

➢ Very simple algorithm

o Read everything from A (or B, whichever is

smaller)

o Build a hash table

o For each record from B

o Probe the hash table.

o Out all matching pairs

o More complicated in real system, but this is

the idea

➢ Lots of records joined

➢ Hash table is not cache friendly

➢ Pack a lot of records of A, send to FPGA to

compute hashes

➢ Instead of using hash table, we sort the hashes

using a very fast radix sort. (10x faster than

quicksort)

➢ Pack a lot of records of B, send to FPGA to

compute hashes

➢ Sort hashes of B

➢ Merge

➢ It is a hybrid hash/sort merge join

Case 1: Hash Join Performance

Use Case 2: GeoSpatial Join

Use Case 2: GeoSpatial Join

˃ SELECT area, count(*) FROM point JOIN area

WHERE ST_Intersects(point, area)

group by area

˃ How many user/devices (points) in each area (polygon)

˃ Intersects is an expensive operation and forces a nested loop join (slow)

Naïve approach will never finish

Use Case 2: GeoSpatial Join

Greenplum + PostGIS GeoSpatial Join + XLIW

➢ Build index (R-tree)

➢ Index Nestloop Join

o For each polygon, using index to lookup points

nearby

o Check the intersects condition

➢ Could take hours

➢ Do not use index

➢ Scan outer loop, build an in-memory data structure

➢ Still expensive operation, but cheaper than

compute intersection (like building an R-tree)

➢ Scan inner loop, probing the in memory data

structure (like probing R-tree)

➢ Check intersection

➢ This step is dominating execution time

XLIW: GeoSpatial Operations

˃ For Intersects

˃ Packing many (point, area) pairs, send to FPGA, compute result

We are not so worried about serialization cost this time

˃ We could have let FPGA build the in memory data structure for us

Currently not the bottleneck

Use Case II: Performance

Use Case 3: Adding Intelligence

˃ An XLIW for data mining/machine learning

˃ Deepgreen Transducer Framework

Allow user to embed C/Java/Go/Python code in SQL

Interleaved with SQL Engine code

First class citizen, optimized by query optimizer, executed in parallel, streaming data to/from
SQL query operators like Sort/Join/Aggregate

˃ ML libraries, Tensor Flow

For example, Deep Neural Network in FPGA

Current Status and Future Directions

˃ Deepgreen DB Appliance on AWS F1

See our demo

On AWS Market Place soon

˃ On premise

˃ We are just scratching the surface

More use cases, endless opportunities

More to squeeze

Conclusion and Thank you

˃ Deepgreen MPP with FPGA on AWS F1 or On Premise

˃ Built for petabyte-size data warehouse applications

˃ Taking full advantage of modern hardware and FPGA, many crucial queries can be

executed swiftly, increasing productivity of data scientists.

˃ Thank Xilinx team!

˃ Thank you all!

Adaptable.

Intelligent.

