

# **LSTM Deep Dive**

Presented By

Jingxiu Liu, Director of Product Marketing, AI and Edge Computing 2018/10/1

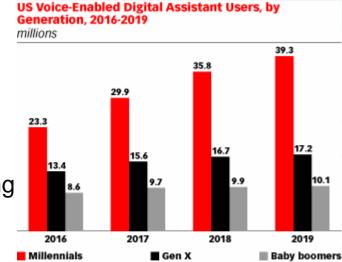




#### How it drive business values?

- Usability: the accurate is reported on par with humans
  - the word error rate for Microsoft's 5.1%, while Google 4.9%.
- virtual assistants with speech recognition capabilities keeps increasing
- Change the way we interact with and build electronics
  - Voicebox: worked on voice recognition for partners including Samsung, AT&T, and Toyota.

The global voice recognition market size was valued at USD 55.17 billion in 2016 and is expected to grow at a CAGR of 11.0% during the forecast period of 2016 to 2024.

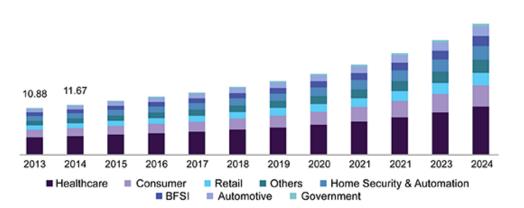


Note: individuals who use voice-enabled digital assistants at least once a month on any device; millennials are individuals born between 1981-2000, Gen X are individuals born between 1965-1980 and baby boomers are individuals born between 1945-1964 Source: eMarketer. April 2017

224459

www.eMarketer.com

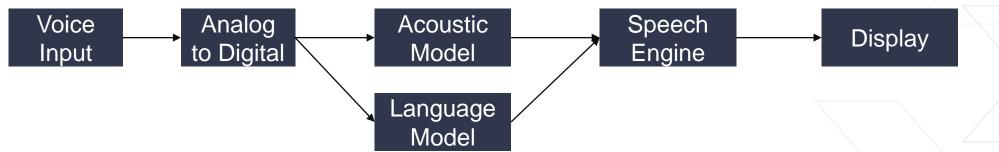
Europe voice recognition market size, by vertical, 2013 - 2024 (USD Billion)





#### What is Speech to Text (Speech Recognition)?

understand voice by the computer and performing any required task.



#### What can it be used?

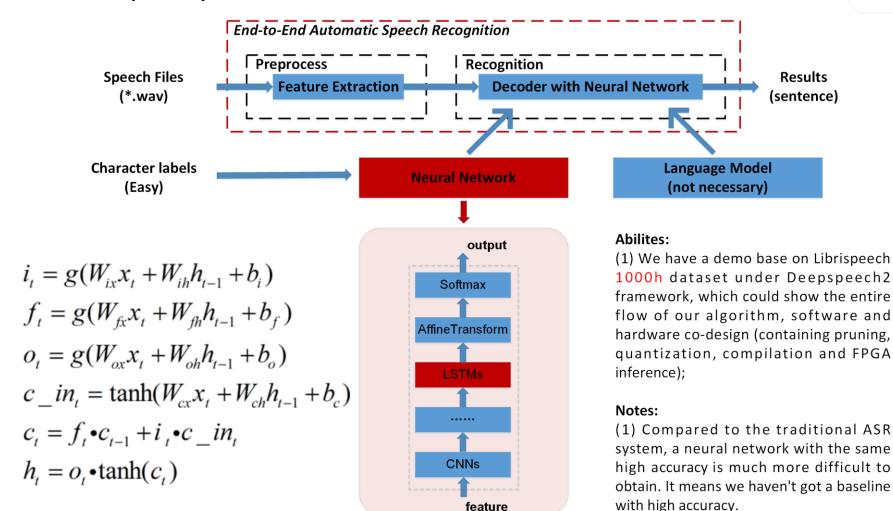
- Dictation
- System control/navigation
- Voice dialing
- Commercial/Industrial applications

Facebook, Amazon, Microsoft, Google and Apple — are already offering this feature on various devices through services like Google Home, Amazon Echo and Siri.

The try to make speech recognition a standard for most product.



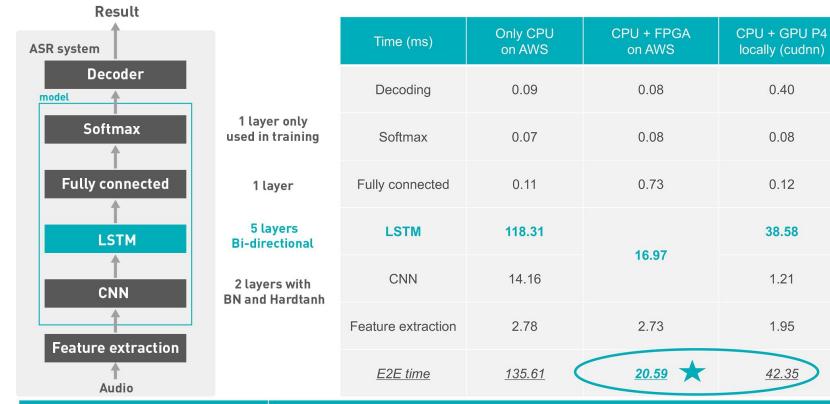
Al-based Solutions (LSTM)



Applications in end-to-end ASR



#### Al-based Solutions (LSTM)



2.06X speedup!

0.40

0.08

0.12

1.21

1.95

| solutions             | Devices and versions                                                                    |
|-----------------------|-----------------------------------------------------------------------------------------|
| CPU + FPGA on AWS     | CPU: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz (8 processors) FPGA: VU9P                |
| Only CPU on AWS       | CPU: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz (8 processors)                           |
| CPU + GPU(P4) locally | CPU: Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz (56 processors) cuda: 8.0.44 cudnn: 6020 |



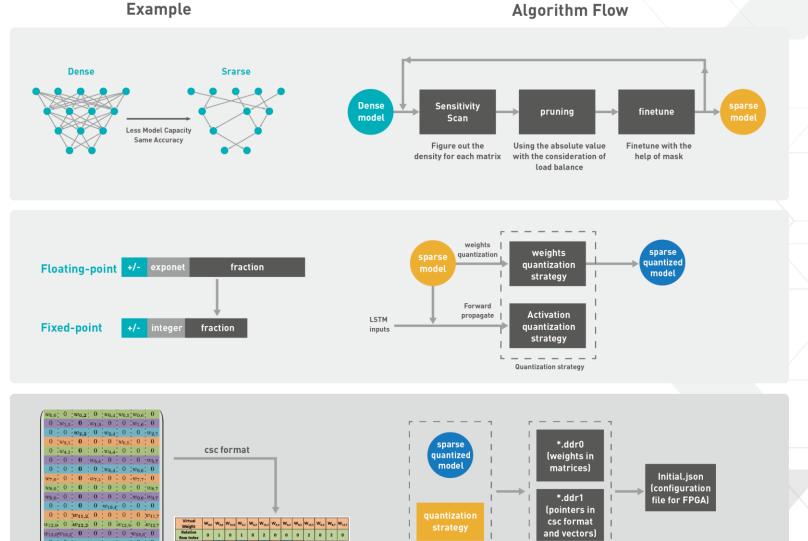
## **LSTM Solution Overview**



### **Overview of LSTM solution**

**Flowchart** Hidden **Algorithm** Deep Neural Network Deep Compression **Pruning** (Best paper Quantizationg of ICLR2016) **Deep Compression** Software Compressed Sparse Column **ESE** Format(CSC) (Best paper Compilation of FPGA2017)

**FPGA** Inference



Our algorithm, software and hardware co-design flow for RNN(LSTM) acceleration

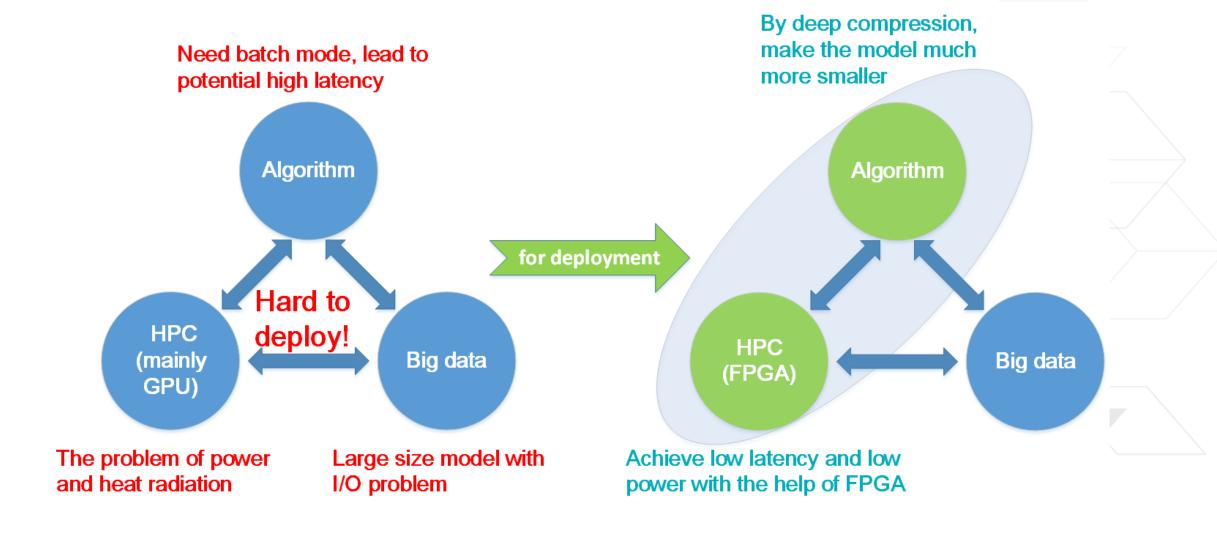
 $0 \quad | \quad 0 \quad | w_{14,2} | w_{14,3} | w_{14,4} | w_{14,5} | \quad 0 \quad | \quad 0$ 



Hardware

### **Overview of LSTM solution**

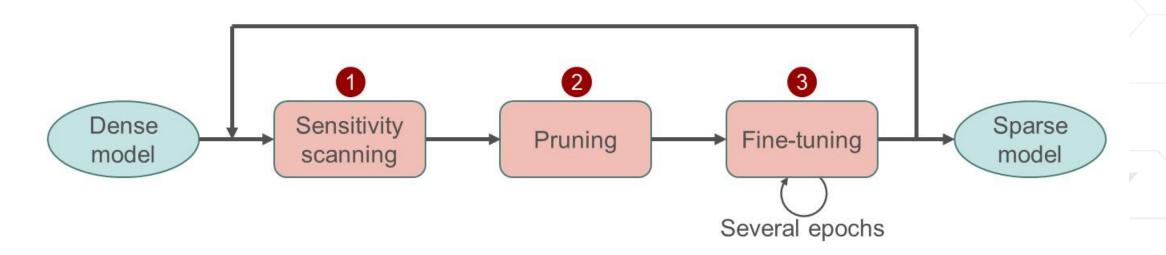
What is the role of DeePhi in this game for LSTMs?





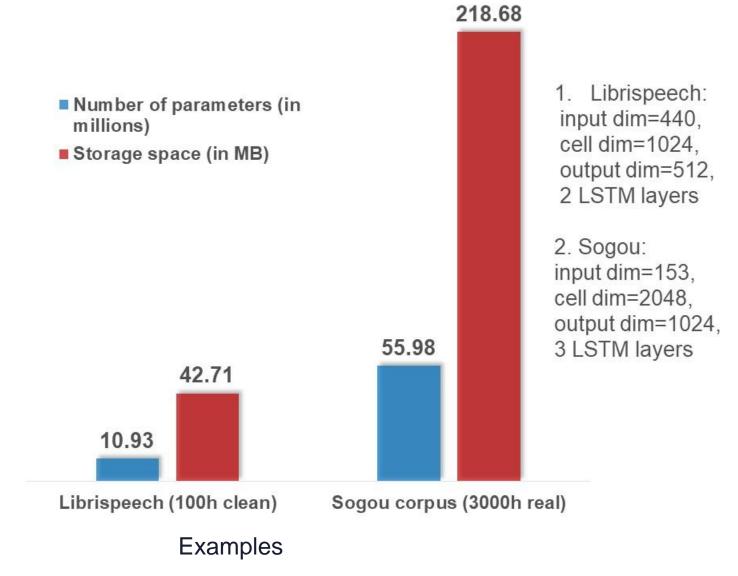


- Step 1: Perform sensitivity scanning to determine how much to be pruned
- Step 2: Prune parameters based on absolute values
- Step 3: Fine-tune to enhance rest parameters
- Repeat step 1-3 to achieve higher sparsity





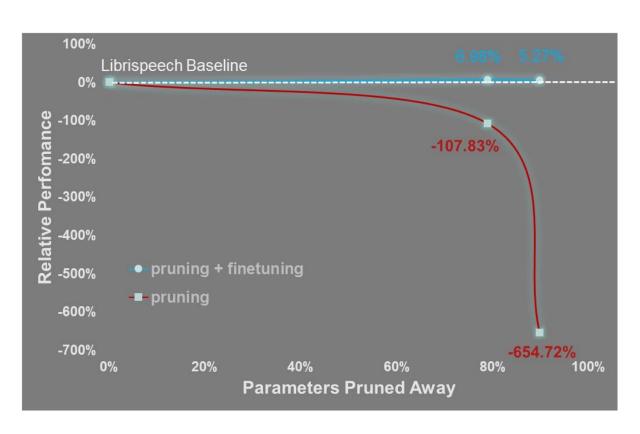


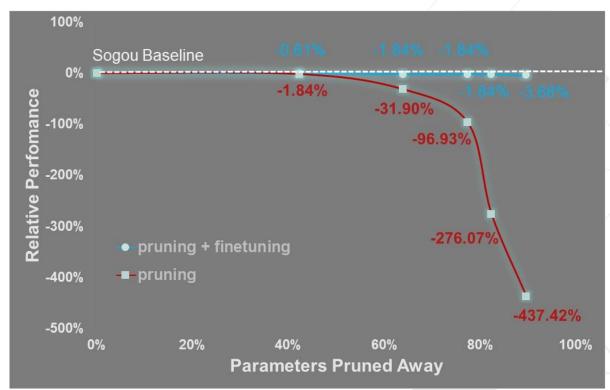




| Dataset        | Model              | density | WER   | Relative Perfomance |
|----------------|--------------------|---------|-------|---------------------|
| Small          | Librispeech dense  | 100%    | 12.90 | 0.0%                |
| (100h)         | Librispeech sparse | 21.1%   | 12.00 | +6.98%              |
|                | Librispeech sparse | 10.30%  | 12.22 | +5.27%              |
| Div            | Sogou dense        | 100%    | 16.3  | 0.0%                |
| Big<br>(3000h) | Sogou sparse       | 17.76%  | 16.6  | -1.84%              |
|                | Sogou sparse       | 10.47%  | 16.9  | -3.68%              |



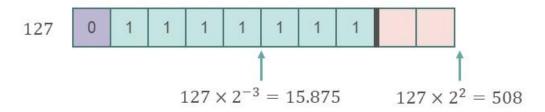




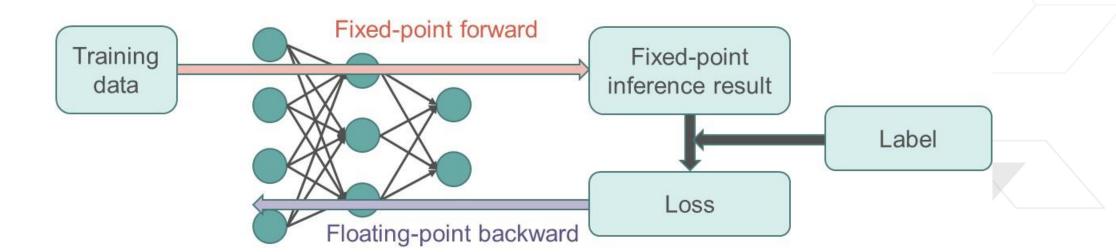




#### Quantization strategy (e.g. 8bit)



#### Fixed-point re-training



Quantization and fixed-training for LSTM



| Dataset        | Model                               | density | WER   | Relative Perfomance |
|----------------|-------------------------------------|---------|-------|---------------------|
| Small          | Librispeech dense                   | 100%    | 12.90 | 0.0%                |
| (100h)         | Librispeech sparse                  | 10.30%  | 12.22 | +6.98%              |
| English        | Librispeech sparse<br>and quantized | 10.30%  | 11.96 | +7.29%              |
| Dia.           | Sogou dense                         | 100%    | 16.3  | 0.0%                |
| Big<br>(3000h) | Sogou sparse                        | 17.76%  | 16.6  | -1.84%              |
| Chinese        | Sogou sparse and quantized          | 17.76%  | 16.6  | -1.84%              |

Quantization strategy:

for Librispeech, weights and x/y/m vectors are both directly quantized to 8bits.

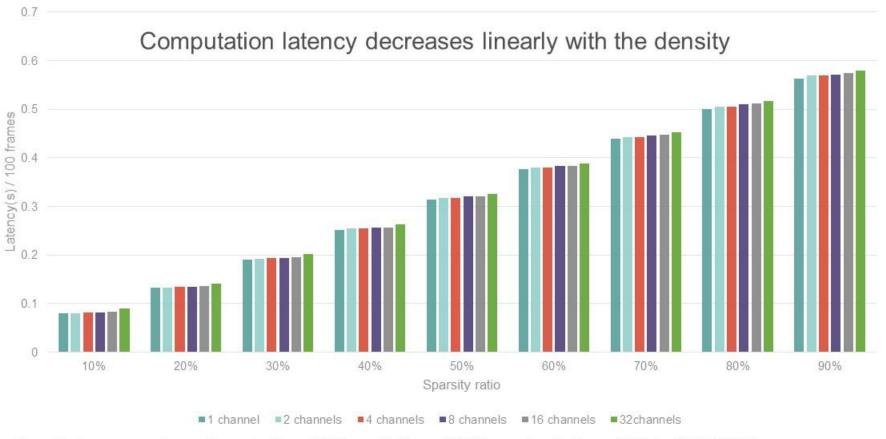
for Sogou network, weights are quantized to 12bits and all vectors are quantized to 16bits;

2. WER: word error rate





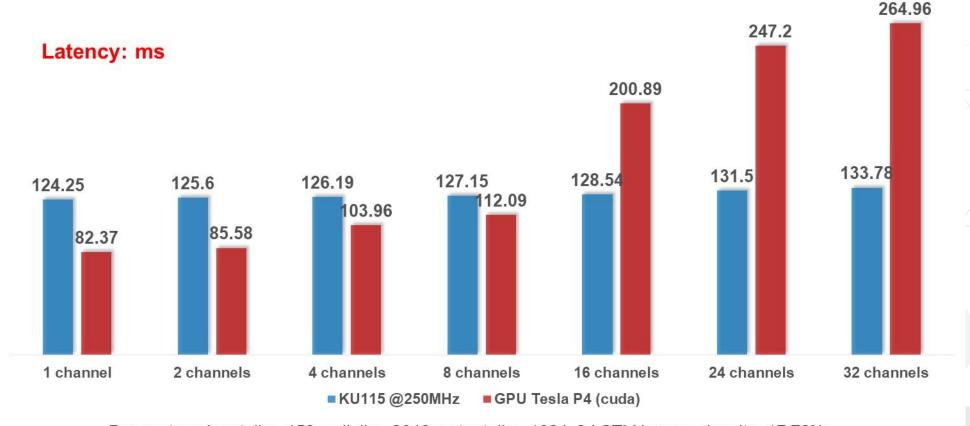
#### Three-layers LSTM



- 1. Net parameters: input dim=153, cell dim=2048, output dim=1024, 3 LSTM layers;
- KU115 is clocked at 250MHz;
- 3. CPU: Intel(R) Xeon(R) CPU E5-2690 v4 @2.60GHz 14 Cores 56 Threads

Latency under different density

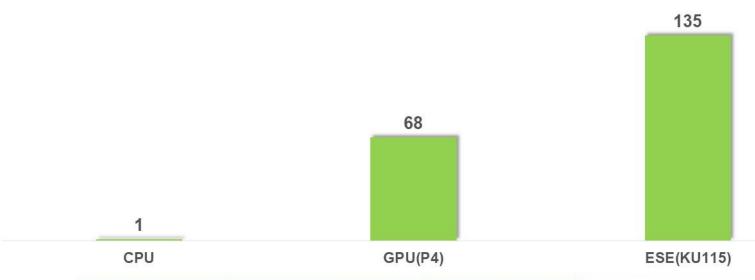




Parameters: input dim=153, cell dim=2048, output dim=1024, 3 LSTM layers, density=17.76%; Local CPU: Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz (56 processors) Non-merged version, 100 frames of input

Performance of LSTMP model for different channels based on Sogou 3000h dataset





| Platforms | CPU(E5-2690 v4) | GPU(P4)    | ESE(KU115) |
|-----------|-----------------|------------|------------|
| Latency   | 18155.22ms      | 264.9576ms | 133.778ms  |
| Power     |                 | 62 W       | 53 W       |
| Speedup   | 1x              | 68x        | 135x       |

- 1. Nnet parameters: input dim=153, cell dim=2048, output dim=1024, 3 LSTM layers, density=17.76%;
- 2. ESE-KU115 is clocked at 250MHz;
- 3. 32 channel speech inputs in parallel.





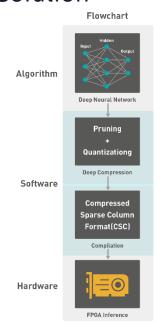
# **DDESE on Cloud**

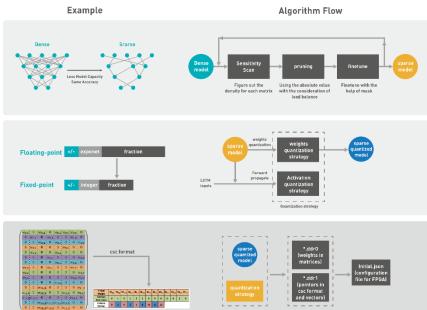




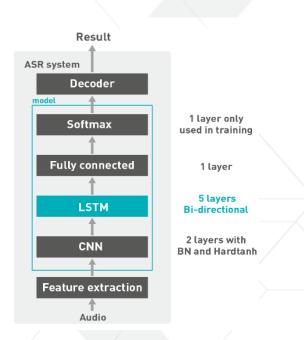
### **DDESE on Clouds**

#### Solution





for end-to-end speech recognition



#### **Partners**



 On clouds, aiming at customers all over the world



Already officially launched in AWS

Marketplace and HUAWEI cloud

(http://www.deephi.com/ddese.html)



✓ Now transplanting to Alibaba cloud

#### Features

| Low storage  | Model compressed more than 10X with negligible loss of accuracy |
|--------------|-----------------------------------------------------------------|
| Low latency  | More than 2X speedup compared to GPU (P4)                       |
| Programmable | Reconfigurable for different requirements                       |



### **DDESE on Clouds**

#### The same model







**Algorithm** 

Accelerating CNN/BLSTM Pruning BLSTM to 15% 16bit weights/activations

Accelerating CNN/BLSTM Pruning BLSTM to 15% 16bit weights/activations

Accelerating LSTMP
Pruning LSTMP to 26.9%
16bit weights/activations

**Software** 

DeepSpeech2 + PyTorch Tools for compression and compilation DeepSpeech2 + PyTorch Tools for compression and compilation

DeepSpeech2 + PyTorch
Tools for compression and
compilation

**Hardware** 

Based on VU9P 220MHz 1 channel

Based on VU9P 200MHz 1 channel Based on KU115 300MHz 1 channel



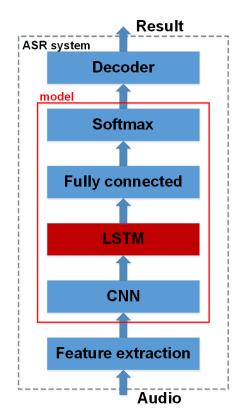
### **DDESE on Clouds**

#### **Features**

Innovative full-stack acceleration solution for deep learning in acoustic speech recognition (ESE: best paper of FPGA2017)

- Support both unidirectional and bi-directional LSTM acceleration on FPGA for model inference
- Support CNN layers, Fully-Connected (FC) layers, Batch Normalization layers and varieties of activation functions such as Sigmoid, Tanh and HardTanh
- Support testing for both performance comparison of CPU/FPGA and single sentence recognition
- Supporting user's own test audio recognition (English, 16kHz sample rate, no longer than 3 seconds)

| Usage                 | Hardware PCIE interface, software API    |
|-----------------------|------------------------------------------|
| Supported layer       | CNN, uni/bi-directional LSTM(P), FC, BN  |
| LSTM layer number     | According to the requirements and source |
| Channel number        | According to the requirements and source |
| Quantization          | 16bit                                    |
| Maximum input of LSTM | 1024                                     |
| Maximum size of LSTM  | 2048                                     |
| Density of LSTM       | Any, typically 10%~20%                   |
| Peephole in LSTM      | Selectable                               |
| Projection in LSTM    | Selectable                               |
| Activation function   | Sigmoid, Tanh, HardTanh                  |



1 layer
only used in training

1 layer

5 layers
uni- or bi- directional
input = 672, cell = 800

2 layers

with BN and Hardtanh



### **DDESE on AWS**



#### Already officially launched in AWS Marketplace

https://aws.amazon.com/marketplace/pp/B079N2J42R?qid=1523443241195&sr=0-1&ref\_=srh\_res\_product\_title

#### **DDESE**

| Version | Launch  | Description                                                   |
|---------|---------|---------------------------------------------------------------|
| V1.0    | 2017.12 | acceleration for unidirectional and bi-directional LSTM model |
| V2.0    | 2018.02 | acceleration for CNN + bi-directional LSTM model              |

#### Add DeePhi solution

#### **FPGA Acceleration Using F1** An F1 instance can have any $\Pi \Pi$ EC2F1 number of AFIs Instance Amazon An AFI can be loaded into the Machine FPGA in less than Image (AMI) Amazon FPGA Image (AFI) **FPGA Link**

### **Model Description**

|                                         | Released model from GitHub | Our model<br>(low accuracy)           | Our model<br>(high accurcy)          |
|-----------------------------------------|----------------------------|---------------------------------------|--------------------------------------|
| RNN type                                | GRU                        | LSTM(without projection)              | LSTM(without projection)             |
| RNN layers                              | 5                          | 5                                     | 5                                    |
| RNN input                               | 672                        | 672                                   | 672                                  |
| RNN size                                | 800                        | 800                                   | 800                                  |
| bi-directional                          | yes                        | no                                    | yes                                  |
| batch normalization                     | yes                        | no                                    | yes                                  |
| WER on libri-test-clean                 | 11.20                      | 15.608                                | 10.764                               |
| Best model after compressing LSTM       |                            | 20% density, LSTM 16bit<br>WER=17.033 | 15% density, LSTM 16bit<br>WER=11.51 |
| Best model after further quantizing CNN |                            |                                       | CNN 16bit weight/ACT<br>WER=11.52    |





amazon

### **Performance of DDESE on AWS**

#### > For LSTM layers only:

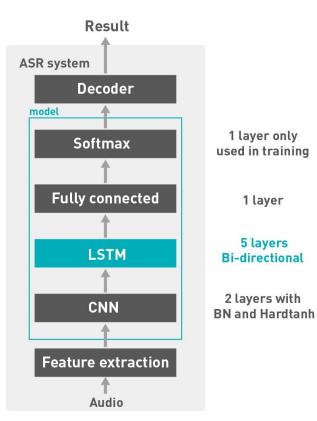
|                        | Baseline (cudnn)                                       | Compression                                       | Hardware | Latency                         | Speedup        |
|------------------------|--------------------------------------------------------|---------------------------------------------------|----------|---------------------------------|----------------|
| Unidirectional<br>LSTM | WER = 15.608<br>E2E = 26.42ms<br>LSTM = 22.60ms        | WER = 17.033<br>Density = 20%<br>16bit weight/ACT | 290MHz   | E2E = 23.76ms<br>LSTM = 7.88ms  | 1.11X<br>2.87X |
| Bi-directional<br>LSTM | WER = 10.764<br>E2E = 42.35ms<br><b>LSTM = 38.58ms</b> | WER = 11.51<br>Density = 15%<br>16bit weight/ACT  | 200MHz   | E2E = 32.61ms<br>LSTM = 15.07ms | 1.30X<br>2.56X |

#### > For CNN + bi-directional LSTM layers:

|               | Baseline (cudnn)                                                | Compression                                               | Hardware                 | Latency     | Speedup |
|---------------|-----------------------------------------------------------------|-----------------------------------------------------------|--------------------------|-------------|---------|
| CNN+<br>BLSTM | WER = 10.764<br>E2E = 42.35ms<br>CNN = 1.21ms<br>LSTM = 38.58ms | WER = 11.52<br>LSTM density = 15%<br>All 16bit weight/ACT | <b>220MHz</b> (on going) | E2E 20.59ms | 2.06X   |

Note: E2E is short for end-to-end, ACT is short for activation, WER is short for word error rate, input: 1 second.

### Details of CNN + bi-directional model on AWS



| Time (ms)          | Only CPU<br>on AWS | CPU + FPGA<br>on AWS | CPU + GPU P4<br>locally (cudnn) |
|--------------------|--------------------|----------------------|---------------------------------|
| Decoding           | 0.09               | 0.08                 | 0.40                            |
| Softmax            | 0.07               | 0.08                 | 0.08                            |
| Fully connected    | 0.11               | 0.73                 | 0.12                            |
| LSTM               | 118.31             | 40.07                | 38.58                           |
| CNN                | 14.16              | 16.97                | 1.21                            |
| Feature extraction | 2.78               | 2.73                 | 1.95                            |
| E2E time           | <u>135.61</u>      | 20.59                | 42.35                           |

2.06X speedup!

| solutions             | Devices and versions                                                                    |
|-----------------------|-----------------------------------------------------------------------------------------|
| CPU + FPGA on AWS     | CPU: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz (8 processors) FPGA: VU9P                |
| Only CPU on AWS       | CPU: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz (8 processors)                           |
| CPU + GPU(P4) locally | CPU: Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz (56 processors) cuda: 8.0.44 cudnn: 6020 |



### **DDESE on HUAWEI Cloud**



- ✓ Already officially launched on HUAWEI Cloud
  - https://app.huaweicloud.com/product/00301-110982-0--0
- ✓ Based on VU9P @200MHz, 1 channel
- ✓ Using CNN + bi-directional LSTM model (with high accuracy)

#### **Model Description**

| RNN type  RNN layers  RNN input         | GRU<br>5 | LSTM(without projection) 5            | LSTM(without projection)             |
|-----------------------------------------|----------|---------------------------------------|--------------------------------------|
| ·                                       |          | 5                                     | F                                    |
| RNN input                               |          |                                       | 5                                    |
|                                         | 672      | 672                                   | 672                                  |
| RNN size                                | 800      | 800                                   | 800                                  |
| bi-directional                          | yes      | no                                    | yes                                  |
| batch normalization                     | yes      | no                                    | yes                                  |
| WER on libri-test-clean                 | 11.20    | 15.608                                | 10.764                               |
| Best model after compressing LSTM       |          | 20% density, LSTM 16bit<br>WER=17.033 | 15% density, LSTM 16bit<br>WER=11.51 |
| Best model after further quantizing CNN |          |                                       | CNN 16bit weight/ACT<br>WER=11.52    |

#### **Using this model**

#### Performance of CNN+BLSTM

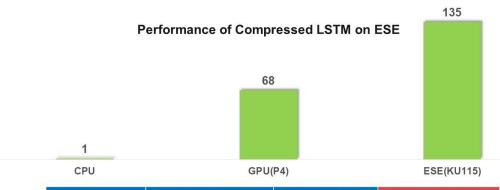
| Solution          | Latency (ms) | Speedup |
|-------------------|--------------|---------|
| GPU (P4)          | 39.79        | 1       |
| AWS<br>@220MHz    | 16.97        | 2.34    |
| HUAWEI<br>@200MHz | 18.60        | 2.14    |



## **Review of Typical Products**

#### **Deep Compression vs Accuracy**

| Dataset           | Model                      | density | WER  | Relative<br>Perfomance |
|-------------------|----------------------------|---------|------|------------------------|
| Chinasa           | Sogou dense                | 100%    | 16.3 | 0.0%                   |
| Chinese<br>(3000h | Sogou sparse               | 17.76%  | 16.6 | -1.84%                 |
| real corpus)      | Sogou sparse and quantized | 17.76%  | 16.6 | -1.84%                 |



| Platforms | CPU(E5-2690 v4) | GPU(P4)    | ESE(KU115) |
|-----------|-----------------|------------|------------|
| Latency   | 18155.22ms      | 264.9576ms | 133.778ms  |
| Power     |                 | 62 W       | 53 W       |
| Speedup   | 1x              | 68x        | 135x       |

- 1. Nnet parameters: input dim=153, cell dim=2048, output dim=1024, 3 LSTM layers, density=17.76%;
- 2. ESE-KU115 is clocked at 250MHz;
- 3. 32 channel speech inputs in parallel.

#### **Partners**







- On clouds, aiming at customers all over the world
- ✓ Already officially launched in AWS
   Marketplace and HUAWEI cloud

(http://www.deephi.com/ddese.html)

✓ Soon available on Alibaba cloud

#### Features

| Low storage  | Model compressed more than 10X with negligible loss of accuracy |
|--------------|-----------------------------------------------------------------|
| Low latency  | More than 2X speedup compared to GPU (P4)                       |
| Programmable | Reconfigurable for different requirements                       |

**DDESE** on Clouds



## **Al Boosting On-premise Solutions**











# Adaptable. Intelligent.



