XDF i
Vivado HLS — Tips and Tricks

Presented By

Frédéric Rivoallon

Marketing Product Manager
October 2018

XILINX.

'Vivado HLS

> Abstracted C based descriptions

Coding techniques

* Micro-architecture

* RAM adaptation

e Data type optimization
Design steps

e Csim

* C synthesis

e Co-sim

> Higher productivity

>> Concise code

>> Optimized libraries 4
>> Fast C simulation
>> Automated simulation of generated RTL *
>> |nterface synthesis (AXI-4)

Integration

\ XILINX . .
)/<D F DEveLores © Copyright 2018 Xilinx

Algorithms

-

/ /| C++

Vivado HLS

Automated RTL verification

Interface synthesi

|

IP Integrator

| rm

Vivado

Synthesis, P&R

Open
Source
'

HLS
C++
Library

& XILINX

'Vivado HLS Acceptance Grows...

= Google Scholar "high level synthesis" "fpga" n
® Articles IAbout6.180 results (0.05 seC)I 5,000+ papers since 2014!

Google scholar trend on “HLS for FPGAS” 1370

B D e ————————] |

High demand for deep
o 4— learning accelerators on
o . FPGAs
" 800
= Ve
© = \ Software programmable
g 400 FPGA SoCs become available
£
2
0
2000 Year 2013 2015 2017

Based on graph from Cornell University.

))(D F E’gl&%%"’“ © Copyright 2018 Xilinx & XILINX.

' Factors for Overall System Performance

> Platform e | Fixed Performance...

>> Off-chip memory, data links (e.g. PCle) Malleable Performance...]

[Data Processing (RTL, HLS)
>> Connectivity IPs ’ ‘ N
Connectivity IPs

Typically Xilinx IPs

> Compute Customization

>> Micro-architecture, parallelism, operators

> Memory Adaptation

>> On-chip memory, shift registers, piping

> Datatype Optimization

>> Customized data type (adjusted to requirement)

))(D F E’gl&%%’PE” © Copyright 2018 Xilinx & XILINX.

ldentify the Performance Challenge

> Compute-bound or memory-bound?

> What kind of

Algorithm
Examples

\ XILINX
DEVELOPER
FORUM

parallelism is required?

Table 1: The current set of the Rosetta applications — Rosetta contains both compute-bound and memory-bound applications with
different workloads. Kernels in each application expose different sources of parallelism: SLP = subword-level parallelism; DLP = data-level
parallelism; ILP = instruction-level parallelism. Different types of parallelism available in each compute kernel are listed in parentheses.

Application Categorization Major Compute Kernels Major HLS Optimizations
Video processing T
(3D Rendering Compute bound Integer arithmetics (ILP) Dataflow pipelining

Lo . Communication customization
Integer operation intensive

Machine learning

Digit Recognition Compute bound Hamming d1stanc_e (SLP, DLP, ILP) Loop gnro_lhpg
_ . . KNN voting (ILP) Loop pipelining
Bitwise operation intensive
< Machine learning Scalior:lzfgdﬁgzt(giii)lﬂ’)ll P) Dataflow pipelining
Spam Filtering Memory bound P .)

Vector addition (DLP, ILP)

. . . Communication customization
Sigmoid function (ILP)

Fixed-point arithmetic intensive

Dataflow pipelining
Memory customization
Communication customization

Video processing
Optical Flow Memory bound
Floating-point arithmetic intensive

1D convolution (DLP, ILP)
Outer product (DLP, ILP)

Machine learning
Compute bound
Bitwise operation intensive

L. Memory customization
Binarized Neural y

Network (BNN) [39]

Binarized 2D convolution (SLP, DLP, ILP)

Binarized dot product (SLP, DLP, ILP) Communication customization

Video processing
\ Face Detection [25] Compute bound
Integer arithmetic intensive

Image scaling (DLP, ILP) Memory customization
Cascaded classifiers (DLP, ILP)]

Cornell University - Rosetta benchmarks: http.//www.csl.cornell.edu/~zhiruz/pdfs/rosetta-fpga2018.pdf
© Copyright 2018 Xilinx

& XILINX

'Proceed Methodologically

Adjusting C code and pragmas

to find the “right” micro-architecture
> 5 Steps to design closure — UG1197 (Chapter 4) is a major design step...

>> The UltraFast High-Level Productivity Design Methodology Guide (Design Hub)

» Define interfaces and data packing

1: Initial Directives - Define loop trip counts

* Pipeline and Dataflow

2: Parallelism - (compute instructions and tasks parallelism)

 Partition memories and ports

3: Improve Pipelining B Remove false dependencies

4: Improve Area - Optionally recover resources through sharing

5: Reduce Latency - Fine tune operator sharing and constraints

PKDF e © Copyright 2018 Xilinx £ XILINX.

'Interface Synthesis

> Simple code quickly becomes a “real” circuit
>> HLS provide block level 10 and interface pragma to customize circuit

void F (int in[20], int out[20]) {
int a,b,c,x,y;
for(int 1 = 0; i < 20; i++) {
x = in[i]; y = a*x + b + ¢; out[i] = y;

The default interface for C
arrays (BRAM) can be
changed to “FIFO” via a
single line pragma (a.k.a
directive)...

i
\9 Control logic = FSM

HLS Adapts Logic to the Design Interface
)\/<D F E’gi%%”’“ © Copyright 2018 Xilinx

& XILINX

' Apply Instruction Level Parallelism with PIPELINE

> PIPELINE applies to loops or functions Initiation Interval (Il):
Number of clock cycles before the
function can accept new inputs

>> |nstructs HLS to process variables continuously

void F (...) { ck [LI LT LT L L L
add: for (i:@;i=<4;i++) { P2 throughput—3>[ReaD | compute] wRITE |
=
PRAGMA HLS PIPELINE loon | _ (reao Jcompute] write |
p latency = 12
op_READ; < >
op_COMPUTE; clk |_| |_| |_| | |
, op_WRITE; m eap | compure] warre I}
“oe > READ | COMPUTE| WRITE
throughput =1 READ | cOMPUTE] WRITE

& N
Cd

loop latency = 6

Loop pipelining example
> Allows for loops or functions to process inputs continuously

>> |mproves throughput (Il gets lower)

PKDF e © Copyright 2018 Xilinx £ XILINX.

'Loop Unrolling

> Unroll forces the parallel execution of the instructions in the loop

void F (...) A

add: for (i=0;i<=3;i++) {

Default: 4 cycles

b =a[i] + b; Note: A tight timing
: constraint could lead
to a latency different
than 1 clock cycle.
Type

Directive: | UNROLL

Destination
) Source File

Q@) Directive File

Options

skip exit check:
pex and select unroll...

In “Directives” pane, select
loop label “add”, right-click

factor (optional):

Example: Fully unrolled loop.
(parallel execution but more area)

[Help J [Cancel] I

\ XILINX
DEVELOPER
FORUM

© Copyright 2018 Xilinx

High performance
execution when array
elements available in
parallel...

Otherwise no benefit
from unrolling this loop...

& XILINX

' PIPELINE and Automatic Loop Unrolling

Initiation Interval (Il):
Number of clock cycles before the
function can accept new inputs

> PIPELINE automatically unrolls loops...

void fir(data_t x, coef_t c[N], acc_t *y) { QUIZ: Which other pragmas might be useful?
#ipragma HLS PIPELINE a) ‘“interface ap_stable” for the coefficients
static data_t shift_x[N]; b) “array partition” for shift_x
acc_t acc; Cc) “expression_balance” to control adder tree
data_t data; d) All of the above
acc=0;
for (int i=N-1;i>=0;i--) {
if (i==0) { Answer d)
Zgi:t—x[a] - i’ * ap_stable helps reduce logic for “c” if the coefficients are
} else { ’ expected to be constant
shift_x[i] = shift_x[i-1]; * Array partitioning the shifter then ensures all “x” can be
data = shift x[i];)
} accessed in parallel
acc+=data*c[i];; * Expression balance to preserve the inherent multiplier-add
iy=acc, cascade chain implied in the C code (longer latency but
} more efficient once mapped onto DSP blocks)

PKDF e © Copyright 2018 Xilinx £ XILINX.

'Removing Inter-Loop Bubbles

> Rewind for PIPELINE for next loop execution to start as soon as possible

>> Removes inter-loop gaps

loop: for(i=1;i<N;i++) {

#pragma HLS PIPELINE rewind
op_Read;
op_Compute;
op_Write;

rRoo EYTE wRro

RD1

WR1

RD2 WR2

Next loop
invocation reads
immediately...

roo YT WRo

> See user guide for more information (including the “flush” option)

2XDF

XILINX
DEVELOPER
FORUM

© Copyright 2018 Xilinx

& XILINX

'C Arrays

> C Arrays describe memories...
>> Vivado HLS default memory model assumes 2-port BRAMs

> Default number of memory ports defined by...
>> How elements of the array are accessed
>> The target throughput (a.k.a initiation interval also referred to as Il)

> Arrays can be reshaped and/or partitioned to remove bottlenecks

2XDF

void foo (...) {

SUM_LOOP:for(i=2;i<N;++i) {
sum += mem[i] + mem[i-1] + mem[i-2];

}
}

See UG902 to get full throughput on this example
» (Chap 3 - Array Accesses and Performance)

L L[]
| RD | RD | WR
L RD_[+

RYSYRYAYA
L RD_[RD_| RD |+ | + [WR_

Example: Code implies three reads from a RAM, prevents full throughput

+

>> Changes to array layout do not require changes to the original code

XILINX

DEVELOPER

FORUM

© Copyright 2018 Xilinx

& XILINX

'Partition, Reshape Your C Arrays

> Partitioning splits an array into independent arrays

>> Arrays can be partitioned on any of their dimensions for better throughput

0 1 N/2-1
Example:
factor of 2 N/Z N-2 N-1
C array
oot 112 41 3 . N1
xample:
0 1 2 N-3 N-2 N-1
factor of 2
0 2 N-2
N-2 N-1
complete 0 }_ ——
N-3 2

} RTL arrays

} RTL arrays

} Individual elements

> Reshaping combines array elements into wider containers

>> Different arrays into a single physical memory

> New RTL memories are automatically generated without changes to C code

\ XILINX . .
)/<D F DEveLoper © Copyright 2018 Xilinx

& XILINX

'Dataflow Pragma — Task Level Parallelism

> By default a C function producing data for another is fully executed first

// This memory can be a FIFO during optimization |_
rgb_pixel inter pix[MAX_HEIGHT][MAX WIDTH]; Sepia Filter Sobel Filter
// Primary processing functions - .
sepia_filter(in_pix,inter_pix); el i] Finish all writes ... then Sobel starts
sobel filter(inter pix,out_pix2); 2lelondless to inter_pix[N].... accessing

> Dataflow allows Sobel to start as soon as data is ready Uy
>> Functions operate concurrently and continuously

>> The interval (hence throughput) is improved W\

>> Channel buffer has to be filled before consumed for ping-pong Sobel Filter]

> Dataflow creates memory channels
Channel (FIFO)

>> Created between loops or functions to store data samples ‘ - |
>> “Ping-pong” channel holds all the data RS Sobel Filter

>> “FIFO” for sequential access, no need to store all the data

PKDF e © Copyright 2018 Xilinx £ XILINX.

'Video Applications and DATAFLOW

> The FIFO channel with DATAFLOW avoids storing frames between tasks
Default Pipelined Dataflow

RAM I/F . Task

Exclusive full function Instruction as)

execution per pixel Parallelism Parallelism
Sepia Filter C Sepia Filter ll l l Sepia Filter

St " Faieien
Sobel Filter C lll Sobel Filter
\ = S i) VNG
Default Pipelined Dataflow

BRAM 2792 2790 24
FF 891 1136 883
LUT 2315 2114 1606
Interval (II) 128,744,588 4,150,224 2,076,613

))(D F E’gl&%%"’“ © Copyright 2018 Xilinx & XILINX.

'Dataflow Hardware Implementation

> HLS inserts a “channel” between the functions > Channel implementation

>> Ping-pong buffer
vecIn[10] vecOut[10] — RAM buffers
> FIFO
— Sequential access

> Vivado implementation (RTL view)

r o i’rﬂ: =
channel
il
vecIn[10] | . F_ o WO | vecOut[10]
[- “T:'r ::‘:’_::::‘ t 1 1 l V : N : — D o ey
= ' a1 . — 5 o ame
B —] i b o — T R L[] o s
= - O o L | [T q:}m) > wme
func 1 =1 BT O vocm eas
giosi] Peaet o
vecOuw hit n [T : > O vecOut wrte
Note: Apply “inline off” pragma to small functions so that they show as a level of hierarchy... fU NC 2

))(D F E’gl&%%"’“ © Copyright 2018 Xilinx & XILINX.

' Dataflow Example

> DATAFLOW allows concurrent execution of two (or more) functions

void top(int vecIn[10], int vecOut[10]) {
#pragma HLS DATAFLOW
int tmp[10];

funcl(vecIn,tmp);
func2(tmp,vecOut);

}

void funcl(int f1In[10], int flOut[10]) {
#pragma HLS INLINE off
#pragma HLS PIPELINE
for(int i=0; i<10; i++) {
flout[i] = f1In[i] * 10;
}
}

void func2(int f2In[10], int f20ut[10]) {
#pragma HLS INLINE off
#pragma HLS PIPELINE
for(int i=0; i<10; i++) {
f20ut[i] = f2In[i] + 2;
}
}

>>

elements cycle

> Vector I/O are modeled as coming
from/to a RAM

> Code on the left has an Il of 5
l.e. vector size of 10 and 2

= Latency (clock cy

Input vector is “BRAM” by default, so only 2
reads in one cycle, hence Il is 5

f:ilz/”//—tOpll

E Summary
Latency | Interval
min max min max Type
100 10 5 S/dataflow .
o petall Function [l
& Instance *
Latency | Interval
Instance | Module| min max min max Type
funcl UO/funcl 5 5 5 5/function
func? UO0|func2 4 4 5 5/function

vecin

e h. 4
funcl_U0

(10)

-

rfuncz_Uﬂ

b
vecOut
Review Optimization in
DATAFLOW viewer

\\ XILINX
DEVELOPER
FORUM

© Copyright 2018 Xilinx

& XILINX

Analyzing Dataflow Results

> View simulation waveforms after RTL cosimulation

>> Toolbar button Open Wave Viewer
>> Top-level signals in waveform view, pre-grouped into useful bundles

Vivado HLS |

¢ Co-simulation Dialog @
C/RTL Co-simulation

-

Run C/RTL Cosimulation:

Simulator (or Auto)

|

RTL Selection
@ Verilog VHDL

Options i
Setup Only 2

Dump Trace |ail b

Select Dump Trace
“all” or “port”

|

_ none
Optimizin

ot
Reduce Di .I:]w‘nl.

Compiled Library Location Browse_

Input Argu:‘nenrs

Do not show this dialog box again.

_(ancel
(3] ciekox |
IXDF &

Vivado HLS

File Edit Project Solution Window Help

(o B XS ROCB BRI -2 B+ ©
[75 Explorer &2 " = O ||l Synthesis(solutjan
C . - a ” Tt Vaorndo -
SIMULATION - Simulation Result - top.wdb
Scope Objects
a = |# s Q o - + H .
. 4 Pre-grouped signals:
Name Design . Block T... Name value
@ ap.. apatb_t.. Verilog..
a. top variog.. * Block-level 10
@i funcl verilog
@ffuncz veriog .. * Cinputs
o Whfo_we_... verilag ..
aff start_fo. werilog °
@ ff AEsL a. verilog al ut c OUtPUtS
2% AesL log ¥ f11n_dout[7:0]
log 2 flin_empty_n

————
@VSelect function:

* Add its signals to waveforms

* ap_done

* ap_idle

* ap_ready

K * ap_start

% mp.C5 fem o
% ap_CS_fsm_
bap_cs_fsm_.

s ap_Cs_fsm_...

Note: Apply “inline off” pragma to small functions so that they remain a level of hierarchy in HLS...

© Copyright 2018 Xilinx 8 XI I_INX

'Analyze Simulation Waveforms

> New Dataflow waveform viewer®
>> Shows task-level parallelism

>> Confirm optimizations took place

Co-Simulation Waveforms in v2018.2

> HLS Schedule Viewer

>> Shows operator timing and clock margin o
>> Shows data dependencies o i]
>> X-probing from operations to source code I '.

HLS Schedule Viewer in v2018.2

(*): 2018.2: Visible when Dataflow is applied, all traces dumped, using Vivado simulator and checking waveform debug

PKDF e © Copyright 2018 Xilin £ XILINX.

Target Markets for HLS

Communications

Aerospace and Defense _
> LTE MIMO receiver

» Radar, Sonar

> Signals Intelligence » Advanced wireless antenna
positioning
ui 3 R
llﬂl"\.h\gﬁ Industrial, Scientific, Medical Audio, Video, Broadcast
il | » Ultrasound systems >» 3D cameras
> » Motor controllers > Video transport

Automotive Consumer
» Infotainment » 3D television
» Driver assistance » eReaders
Test & Measurement Computing & Storage
» Communications instruments » High performance computing |
» Semiconductor ATE » Database acceleration 2

))(D F E’gl&%%“" © Copyright 2018 Xilinx & XILINX.

'Vivado HLS Resources

> Vivado HLS is included in all Vivado HLx Editions (free in WebPACK)
> Videos on xilinx.com and YouTube

> DocNav: Tutorials, UG, app notes, videos, etc...

> Application notes on xilinx.com (also linked from hub)

> Code examples within the tool itself and on github

> Instructor led training

£ XILINX

\LL PROGRAMMABLE,

PKDF e © Copyright 2018 Xilin £ XILINX.

'Summary

Performance Boosters for HLS...

> Compute customization, memory adaptation, datatype optimization

Throughput Optimizations...

> Apply task and instruction level parallelism

Vivado HLS is not just C synthesis...

> It's C simulation, automated RTL simulation, interface synthesis, waveform analysis

)><D I: oeveLopes © Copyright 2018 Xilinx 8 XI LlNX

FFFFF

