
© Copyright 2018 Xilinx

Presented By

Frédéric Rivoallon

Marketing Product Manager

October 2018

Vivado HLS – Tips and Tricks

© Copyright 2018 Xilinx

Vivado HLS

˃ Abstracted C based descriptions

˃ Higher productivity

Concise code

Optimized libraries

Fast C simulation

Automated simulation of generated RTL

Interface synthesis (AXI-4)

Open

Source

HLS

C++

Library

RTL IP

Vivado

Synthesis, P&R

Vivado HLS

RTL

Platform

Awareness

IP Integrator

AXI I/F

Algorithms

C / C++

OpenCL

Interface synthesis

Automated RTL verification

Coding techniques
• Micro-architecture
• RAM adaptation
• Data type optimization

Design steps
• C sim
• C synthesis
• Co-sim

Integration

RTL IP

© Copyright 2018 Xilinx

Vivado HLS Acceptance Grows…

Based on graph from Cornell University.

2017201520132000
Year

1370

5,000+ papers since 2014!

Software programmable

FPGA SoCs become available

High demand for deep

learning accelerators on

FPGAs

© Copyright 2018 Xilinx

Factors for Overall System Performance

˃ Platform

Off-chip memory, data links (e.g. PCIe)

Connectivity IPs

˃ Compute Customization

Micro-architecture, parallelism, operators

˃ Memory Adaptation

On-chip memory, shift registers, piping

˃ Datatype Optimization

Customized data type (adjusted to requirement)

D

D

R

FPGA

Connectivity IPs
Typically Xilinx IPs

Data Processing (RTL, HLS)

Malleable Performance…

Fixed Performance…

© Copyright 2018 Xilinx

Identify the Performance Challenge

Cornell University - Rosetta benchmarks: http://www.csl.cornell.edu/~zhiruz/pdfs/rosetta-fpga2018.pdf

˃ Compute-bound or memory-bound?

˃ What kind of parallelism is required?

Algorithm
Examples

© Copyright 2018 Xilinx

˃ 5 Steps to design closure – UG1197 (Chapter 4)

The UltraFast High-Level Productivity Design Methodology Guide (Design Hub)

Proceed Methodologically

• Define interfaces and data packing

• Define loop trip counts

• Pipeline and Dataflow

• (compute instructions and tasks parallelism)

• Partition memories and ports

• Remove false dependencies

• Optionally recover resources through sharing

• Fine tune operator sharing and constraints

Adjusting C code and pragmas
to find the “right” micro-architecture
is a major design step…

© Copyright 2018 Xilinx

Interface Synthesis

f(int in[20], int out[20]) {

int a,b,c,x,y;

for(int i = 0; i < 20; i++) {

x = in[i]; y = a*x + b + c; out[i] = y;}

˃ Simple code quickly becomes a “real” circuit

HLS provide block level IO and interface pragma to customize circuit

void F (int in[20], int out[20]) {

int a,b,c,x,y;

for(int i = 0; i < 20; i++) {

x = in[i]; y = a*x + b + c; out[i] = y;

}

a

x

b
c

y

Control logic – FSM

i
i

in
BRAM

out
BRAM

HLS Adapts Logic to the Design Interface

v

v

v

v

v v v

*

+

+
in

FIFO

out
FIFO

The default interface for C
arrays (BRAM) can be
changed to “FIFO” via a
single line pragma (a.k.a
directive)…

v

v

v

© Copyright 2018 Xilinx

Apply Instruction Level Parallelism with PIPELINE

˃ PIPELINE applies to loops or functions

Instructs HLS to process variables continuously

˃ Allows for loops or functions to process inputs continuously

Improves throughput (II gets lower)

void F (...) {
...
add: for (i=0;i=<4;i++) {

op_READ;
op_COMPUTE;
op_WRITE;

}
...

default

PIPELINE

Loop pipelining example

void F (...) {
...
add: for (i=0;i=<4;i++) {
PRAGMA HLS PIPELINE

op_READ;
op_COMPUTE;
op_WRITE;

}
...

Initiation Interval (II):
Number of clock cycles before the
function can accept new inputs

READ

clk
COMPUTE WRITE

READ COMPUTE WRITE

loop latency = 12

throughput = 3 READ COMPUTE WRITE

READ COMPUTE WRITE

READ

clk
COMPUTE WRITE

READ COMPUTE WRITE

loop latency = 6

throughput = 1
READ COMPUTE WRITE

READ COMPUTE WRITE

© Copyright 2018 Xilinx

Loop Unrolling

˃ Unroll forces the parallel execution of the instructions in the loop

void F (...) {
...
add: for (i=0;i<=3;i++) {

b = a[i] + b;
...

Default: 4 cycles

a[3]
a[2]

a[1]
a[0]

b

+ + + +

Unroll: 1 cycle

0 1 2 3

clk

0
1
2
3

clk

Example: Fully unrolled loop.
(parallel execution but more area)

In “Directives” pane, select
loop label “add”, right-click
and select unroll…

v

Note: A tight timing

constraint could lead

to a latency different

than 1 clock cycle.

High performance
execution when array
elements available in
parallel…
Otherwise no benefit
from unrolling this loop…

© Copyright 2018 Xilinx

PIPELINE and Automatic Loop Unrolling

˃ PIPELINE automatically unrolls loops…

void fir(data_t x, coef_t c[N], acc_t *y) {

#pragma HLS PIPELINE
static data_t shift_x[N];
acc_t acc;
data_t data;

acc=0;
for (int i=N-1;i>=0;i--) {

if (i==0) {
shift_x[0] = x;
data = x;

} else {
shift_x[i] = shift_x[i-1];
data = shift_x[i];

}
acc+=data*c[i];;

}
*y=acc;

}

QUIZ: Which other pragmas might be useful?

a) “interface ap_stable” for the coefficients

b) “array partition” for shift_x

c) “expression_balance” to control adder tree

d) All of the above

Answer d)

• ap_stable helps reduce logic for “c” if the coefficients are

expected to be constant

• Array partitioning the shifter then ensures all “x” can be

accessed in parallel

• Expression balance to preserve the inherent multiplier-add

cascade chain implied in the C code (longer latency but

more efficient once mapped onto DSP blocks)

Initiation Interval (II):
Number of clock cycles before the
function can accept new inputs

© Copyright 2018 Xilinx

Removing Inter-Loop Bubbles

˃ Rewind for PIPELINE for next loop execution to start as soon as possible

Removes inter-loop gaps

loop: for(i=1;i<N;i++) {
op_Read;
op_Compute;
op_Write;

}

RD

CMP

WR

RD0 CMP WR0

RD1 CMP WR1

RD2 CMP WR2

RDN CMP WRN

RD0 CMP WR0

RD1 CMP WR1

RD2 CMP WR2

RDN CMP WRN

Next loop

invocation

starts after

previous one

has finished…

loop: for(i=1;i<N;i++) {
#pragma HLS PIPELINE rewind

op_Read;
op_Compute;
op_Write;

}

RD

CMP

WR

RD0 CMP WR0

RD1 CMP WR1

RD2 CMP WR2

RDN CMP WRN

RD0 CMP WR0

RD1 CMP WR1

RD2 CMP WR2

RDN CMP WRN

Next loop
invocation reads
immediately…

˃ See user guide for more information (including the “flush” option)

© Copyright 2018 Xilinx

˃ C Arrays describe memories…

Vivado HLS default memory model assumes 2-port BRAMs

˃ Default number of memory ports defined by…

How elements of the array are accessed

The target throughput (a.k.a initiation interval also referred to as II)

C Arrays

RD +

void foo (...) {

...
SUM_LOOP:for(i=2;i<N;++i) {

sum += mem[i] + mem[i-1] + mem[i-2];

...

}

}

RD RD

RD +

RD

Example: Code implies three reads from a RAM, prevents full throughput

See UG902 to get full throughput on this example
• (Chap 3 – Array Accesses and Performance)

˃ Arrays can be reshaped and/or partitioned to remove bottlenecks

Changes to array layout do not require changes to the original code

RD WR+ WR

+

© Copyright 2018 Xilinx

˃ Partitioning splits an array into independent arrays

Arrays can be partitioned on any of their dimensions for better throughput

Partition, Reshape Your C Arrays

Example:

factor of 2

C array

0 1 2 … N-3 N-2 N-1
1 3 … N-1

0 2 … N-2

cyclic

˃ Reshaping combines array elements into wider containers

Different arrays into a single physical memory

New RTL memories are automatically generated without changes to C code

block

complete 1
…

N-3

N-1

0
2

N-2

0 1 … N/2-1

N/2 … N-2 N-1

RTL arrays

RTL arrays

Individual elements

Example:

factor of 2

© Copyright 2018 Xilinx

Sepia Filter

[0] [1] [2] [3]

Sobel Filter

…

Dataflow Pragma – Task Level Parallelism

˃ By default a C function producing data for another is fully executed first

// This memory can be a FIFO during optimization
rgb_pixel inter_pix[MAX_HEIGHT][MAX_WIDTH];

// Primary processing functions
sepia_filter(in_pix,inter_pix);
sobel_filter(inter_pix,out_pix2);

Sepia Filter

Sobel Filter

Sepia Filter Sobel Filter

Finish all writes

to inter_pix[N]…
… then Sobel starts

accessing

inter_pix[N]

Sepia Filter

[0] [1] [2] [3]

Sobel Filter

…

˃ Dataflow allows Sobel to start as soon as data is ready

Functions operate concurrently and continuously

The interval (hence throughput) is improved

Channel buffer has to be filled before consumed for ping-pong

˃ Dataflow creates memory channels

Created between loops or functions to store data samples

“Ping-pong” channel holds all the data

“FIFO” for sequential access, no need to store all the data

Sepia Filter Sobel Filter
RAM

RAM

Channel (ping-pong)

Sepia Filter Sobel Filter

Channel (FIFO)

FIFO

© Copyright 2018 Xilinx

Video Applications and DATAFLOW

˃ The FIFO channel with DATAFLOW avoids storing frames between tasks

FIFO

FIFO

FIFO

FIFO

RAM

FIFO

Sepia Filter

Sobel Filter

FIFO

RAM

FIFO

Default Pipelined Dataflow

RAM I/F

RAM I/F

Stream

Stream

Stream

Stream

Default Pipelined Dataflow

BRAM 2792 2790 24

FF 891 1136 883

LUT 2315 2114 1606

Interval (II) 128,744,588 4,150,224 2,076,613

Sepia Filter

Sobel Filter

Sepia Filter

Sobel Filter

Instruction
Parallelism

Instruction
Parallelism

Task
Parallelism

Exclusive full function
execution per pixel

Exclusive full function
execution per pixel

© Copyright 2018 Xilinx

Dataflow Hardware Implementation

˃ HLS inserts a “channel” between the functions

func 1 channel

˃ Vivado implementation (RTL view)

func 2
vecIn[10] vecOut[10]

vecIn[10] vecOut[10]

channel

func 1

func 2

˃ Channel implementation

Ping-pong buffer

‒ RAM buffers

FIFO

‒ Sequential access

RAM

RAM

FIFO

Note: Apply “inline off” pragma to small functions so that they show as a level of hierarchy…

© Copyright 2018 Xilinx

Dataflow Example

void top(int vecIn[10], int vecOut[10]) {
#pragma HLS DATAFLOW

int tmp[10];

func1(vecIn,tmp);
func2(tmp,vecOut);

}

void func1(int f1In[10], int f1Out[10]) {
#pragma HLS INLINE off
#pragma HLS PIPELINE

for(int i=0; i<10; i++) {
f1Out[i] = f1In[i] * 10;

}
}

void func2(int f2In[10], int f2Out[10]) {
#pragma HLS INLINE off
#pragma HLS PIPELINE

for(int i=0; i<10; i++) {
f2Out[i] = f2In[i] + 2;

}
}

˃ DATAFLOW allows concurrent execution of two (or more) functions

Review Optimization in

DATAFLOW viewer

Input vector is “BRAM” by default, so only 2
reads in one cycle, hence II is 5

top II

Function II

˃ Vector I/O are modeled as coming

from/to a RAM

˃ Code on the left has an II of 5

i.e. vector size of 10 and 2
elements cycle

© Copyright 2018 Xilinx

Analyzing Dataflow Results

˃ View simulation waveforms after RTL cosimulation

Toolbar button Open Wave Viewer

Top-level signals in waveform view, pre-grouped into useful bundles

1
Run C/RTL Cosimulation:

Vivado Simulator (or Auto)

Select Dump Trace
“all” or “port”

2

4
Click Open Wave Viewer icon

3 Click OK

Pre-grouped signals:
• Block-level IO
• C inputs
• C outputs

5

Vivado HLS Vivado HLS

Vivado

Select function:
• Add its signals to waveforms

• ap_done
• ap_idle
• ap_ready
• ap_start

6

Note: Apply “inline off” pragma to small functions so that they remain a level of hierarchy in HLS…

© Copyright 2018 Xilinx

Analyze Simulation Waveforms

˃ New Dataflow waveform viewer(*)

Shows task-level parallelism

Confirm optimizations took place

˃ HLS Schedule Viewer

Shows operator timing and clock margin

Shows data dependencies

X-probing from operations to source code

Co-Simulation Waveforms in v2018.2

HLS Schedule Viewer in v2018.2

(*): 2018.2: Visible when Dataflow is applied, all traces dumped, using Vivado simulator and checking waveform debug

© Copyright 2018 Xilinx

Target Markets for HLS

Communications

LTE MIMO receiver

Advanced wireless antenna

positioning

Audio, Video, Broadcast
3D cameras

Video transport

Consumer
3D television

eReaders

Aerospace and Defense
Radar, Sonar

Signals Intelligence

Industrial, Scientific, Medical
Ultrasound systems

Motor controllers

Automotive

Infotainment

Driver assistance

Computing & Storage
High performance computing

Database acceleration

Test & Measurement
Communications instruments

Semiconductor ATE

© Copyright 2018 Xilinx

Vivado HLS Resources

˃ Vivado HLS is included in all Vivado HLx Editions (free in WebPACK)

˃ Videos on xilinx.com and YouTube

˃ DocNav: Tutorials, UG, app notes, videos, etc…

˃ Application notes on xilinx.com (also linked from hub)

˃ Code examples within the tool itself and on github

˃ Instructor led training

© Copyright 2018 Xilinx

Summary

Performance Boosters for HLS…

Throughput Optimizations…

Vivado HLS is not just C synthesis…

˃ Compute customization, memory adaptation, datatype optimization

˃ Apply task and instruction level parallelism

˃ It’s C simulation, automated RTL simulation, interface synthesis, waveform analysis

© Copyright 2018 Xilinx

