
© Copyright 2018 Xilinx

CTO Organization

October 2018

Conversation with

Xilinx Research Labs

© Copyright 2018 Xilinx

Enable New Users

Open New Markets

Create New Value

Win Mindshare of Innovators

Xilinx Research Mission

© Copyright 2018 Xilinx

Research : Pathfinding & Differentiation

Core Context

Mission Critical

Non-Critical

Differentiation

R
is

k
 A

v
o

id
a
n

c
e

Engineering

3rd PartyResearch Labs

Innovate

Execute

Outsource

ACADEMIA

STARTUPS

© Copyright 2018 Xilinx

˃ Provide support for teaching, training professors,

workshops, hackathons

˃ Give students access to our latest technology

˃ Enable new business and technical opportunities

through research partnerships

Xilinx University Program Mission

Empower academic teaching, research, and

entrepreneurship with Xilinx technologies

© Copyright 2018 Xilinx

Our Corporate Mission

Building the Adaptable
Intelligent World

© Copyright 2018 Xilinx

Our Strategy

Focus on

Data
Center

Opportunity

Accelerate

Core

Markets

Growth

Build

Adaptive
Computing

Platform

© Copyright 2018 Xilinx

SW Programmable Engine Array

Adaptive Computing

Programmable Logic Array

Processing

System
I/O

Vector

Core

Vector

Core

Vector

Core

Vector

Core

Vector

Core

Vector

Core

Logic BRAM

DSP URAM

Application

Processor

Multi-core

A72

Real-Time

Processor

Multi-core

R5

Transceivers

PCIe

Memory I/F

DDR

HBM

CCIX

TB/s of Bandwidth

PL-to- Vector Cores

160 GB/s of

Memory B/W per Core

Custom Memory

Hierarchy

VECTOR
CORE

M
E

M
O

R
Y

VECTOR
CORE

M
E

M
O

R
Y

VECTOR
CORE

M
E

M
O

R
Y

VECTOR
CORE

M
E

M
O

R
Y

© Copyright 2018 Xilinx

Data Center

Devices Production Boards
Compute, Networking, Storage

FPGA as a Service (FaaS)

© Copyright 2018 Xilinx

Open Frameworks

Accelerated

Libraries

Development

Environment

Development

Boards

Development

Stack

System

Developers

Software

Application

Developers

Machine

learning

Database

analytics

Enabling Software Developers

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj9vv7B3Z3TAhWLs1QKHXsUCLIQjRwIBw&url=https://cloud.google.com/genomics/v1alpha2/gatk&psig=AFQjCNHGavFUzaRj42NkQr5FyJZGYx5JHA&ust=1492045691357060

© Copyright 2018 Xilinx

Discussion Topics

˃ PYNQ : Python Productivity on Zynq

˃ FINN : Software framework for reduced precision Neural

Networks

˃ Programming SmartNIC using the P4 language and NetFPGA

˃ RapidWright : A framework for fast and efficient implementation

of modular design

˃ Engaging with Xilinx University Program

© Copyright 2018 Xilinx

Presented By

Patrick Lysaght

Senior Director

1st Oct 2018

Python Productivity for Zynq

© Copyright 2018 Xilinx

Overview

˃ More productivity

˃ Enabling technologies

˃ Open source

˃ PYNQ

˃ Next steps

˃ Research opportunities

© Copyright 2018 Xilinx

PYNQ Python Productivity on Zynq

Hardware
Engineers

Embedded software
Engineers

New users are not always hardware designers,
or embedded systems designers

Domain Experts
Software Engineers

Enable more people to program Xilinx

processing platforms, more productively

AND

Offers more rapid development for h/w designers

and embedded s/w engineers

© Copyright 2018 Xilinx

Python is increasingly the language of choice

https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages

Top Programming Languages,
IEEE Spectrum, July’17
Top Programming Languages,
IEEE Spectrum, July’18

Python is listed as an

embedded language

for the first time

Python is the fastest growing language: driven by data science, AI, ML and academia

Standard Python comes with comprehensive

libraries but also has a huge external ecosystem

© Copyright 2018 Xilinx

IPython Notebooks to Jupyter Notebooks

Jupyter … Julia, Python, R

Default engine of data science

2+ million GitHub notebooks

Taught to 1,000+ Berkeley
students every semester

Jupyter notebooks Visualization

TerminalCode editor

Jupyter Notebooks to JupyterLab IDE

Next-gen browser IDE

Includes Jupyter Notebooks

2017 ACM

Software System Award

© Copyright 2018 Xilinx

PYNQ: Python productivity for Zynq

Jupyter notebooks,
browser-based interface

PYNQ enables JupyterLab
on Zynq and ZU+

Ubuntu-based
Linux

Jupyter web
server

IPython kernel

ARM A53s

Overlays/designs

ZU+ Fabric

Hardware C-drivers wrapped
in Python packages

Most competitive, open and
advanced GUI

Runs natively on

ARM processors

© Copyright 2018 Xilinx

PYNQ’s Ubuntu-based Linux

Kernel, Bootloader

Ubuntu Root File System

PYNQ’s

Ubuntu-based Linux

Python

Packages

Dev

Tools

PYNQ uses the PetaLinux build flow and board support package:

• Access to all Xilinx kernel patches

• Works with any Xilinx supported board

• Configured with additional drivers, eg for PS-PL interfaces

Ubuntu/

Debian

Packages

Package

Manager/

Repository

PYNQ uses Ubuntu’s:

• Root file system (RFS)

• Package manager (apt-get)

• Repositories

PYNQ bundles :

• Development tools

• Cross-compilers

• Latest Python packages

© Copyright 2018 Xilinx

PYNQ provides Linux drivers for PS-PL interfaces …

1 532 4

wrapped in Python libraries

1

2

3

4

5

Zynq

© Copyright 2018 Xilinx

is a Framework

APIs

Drivers

Bitstreams

Linux kernel

Python

FPGA

Overlay

xdevcfg sysgpio uio devmem

dma

axi_intc

XLNK

xlnk

GPIOPL Interrupt libsds.soMMIO

Apps
Jupyter/

IPython
numpy opencvscikit-learnmatplotlib

PYNQ notebooks

PYNQ packages

PYNQ IPs

PYNQ overlays

User designs

© Copyright 2018 Xilinx

Software-style packaging & distribution of designs
Enabled by new hybrid packages

xDNN, A. Sirasao et al OpenCV, K. Denolf et alIIoT, C. Fritsch et alQNN, M. Blott et al

Download a design from GitHub with a single Python command:

pip install git+https://github.com/Xilinx/pynqDL.git

© Copyright 2018 Xilinx

Zynq

Load the downloaded resizer design into Zynq

from pynq import Overlay
resizer = Overlay(‘./resizer.bit’)

PYNQ automatically configures many design parameters

based on data parsed from hybrid package

1

2

3

4

5

© Copyright 2018 Xilinx

Notebook Examples

Software only re-sizing

Hardware accelerated re-sizing

© Copyright 2018 Xilinx

Activity Snapshots
Community projects

DAC Contest

© Copyright 2018 Xilinx

Next steps: scaling across Platforms and Domains

Avnet

Ultra96

© Copyright 2018 Xilinx

New PYNQ-Z2 Board available now

• New PYNQ reference platform

• New stereo audio with on-board codec

• New Raspberry Pi connector

• Open source design

• Manufactured by TUL in Taiwan

• Distributed by Newark & Newegg

• Academic discounts & donations

available
$119 to everyone in US

© Copyright 2018 Xilinx

New Research Opportunities: RFSoC and JupyterLab

• State-of-the-art BIG DATA analysis

• State-of-the-art BIG DATA interactive visualization

• Opportunities: ML and SDR

• Cognitive & agile radios

JupyterLabRFSoC

© Copyright 2018 Xilinx

Edge-to-cloud SDR with Machine Learning

Outer loop:
• Heavy duty ML

• Aggregated across edge nodes

• Longer timescale ML

Outer control loop

Inner control loop/s

Inner loop/s:
• Real-time control

• Localized ML

• Local communication between

nodes

‘No future SDR will be complete without machine learning’

© Copyright 2018 Xilinx

Edge-to-cloud Co-design Opportunities

Common JupyterLab tools at edge and cloud

PYNQ enables ML experts

and radio engineers

to focus on their ‘value-add’

Edge-to-cloud co-design trade-offs:

• Maximize on-chip processing

• Minimize edge-to-cloud data exchange

• Exploit scalability of cloud processing

• Aggregate intelligence between and across multiple edge nodes

• Co-optimize the above for best system performance

© Copyright 2018 Xilinx

pynq.io

pynq.readthedocs.org

github.com/Xilinx/PYNQ

pynq.io/support

tul.com.tw/ProductsPYNQ-Z2.html

http://www.facebook.com/XilinxInc
http://www.twitter.com/XilinxInc
http://www.youtube.com/XilinxInc
http://plus.google.com/+Xilinx
http://www.tul.com.tw/ProductsPYNQ-Z2.html

© Copyright 2018 Xilinx20

© Copyright 2018 Xilinx

Presented By

Kees Vissers

Fellow

October 1, 2018

Machine Learning: FINN

© Copyright 2018 Xilinx

Increasing Range of Applications use Machine Learning

>> 33

Computer Vision
CNNs

Object Detection Semantic Segmentation Image Classification

Sedan:	0.98
Motorcycle:	0.005
Truck:	0.005
…

Sedan Sedan

Road

(a)	Image	classification (b)	Object	detection (c)	Semantic	segmentation

Speech Recognition

RNNs, LSTMs
Speech

Recognition

Speaker

Diarization

Others

Natural Language Processing
Sequence to sequence

Sentiment AnalysisTranslation

Recommender GamePlay

© Copyright 2018 Xilinx

Popular Neural Networks

>> 34

Computer Vision
CNNs

Object Detection Semantic Segmentation Image Classification

Sedan:	0.98
Motorcycle:	0.005
Truck:	0.005
…

Sedan Sedan

Road

(a)	Image	classification (b)	Object	detection (c)	Semantic	segmentation

Speech Recognition

RNNs, LSTMs
Speech

Recognition

Speaker

Diarization

Others

Natural Language Processing
Sequence to sequence

Sentiment AnalysisTranslation

Recommender GamePlay

ResNet50, VGG, AlexNet,

InceptionV3 Faster R-CNN,

Yolo9000, YoloV2

Mask-R-CNN,

SSD

DeepSpeech2

Seq2Seq,

Transformer
Seq-CNN

NCF
MiniGo,

DeepQ, A3C

© Copyright 2018 Xilinx

The use of Frameworks for inference on FPGAs

Neural Networks

(Algorithms)

(e.g. Resnet50)

Neural Networks

Inference

Neural Networks

Training

Datasets

(e.g. Imagenet)

implementation on FPGA

with Reduced Precision

Training for Reduced Precision

© Copyright 2018 Xilinx

Architectures for Deep Learning

CPUs GPUs
Soft DPUs

(FPGA)
Hard DPUs

(ASIC)

ARM Marvin, TPU, Cerebras,
Graphcore, Groq, Nervana,
Wave Computing, Eyeriss,
Movidius, Kalray

AMD
ARM
Intel

AMD
NVIDIA
Qualcomm

DeePhi
Teradeep
XDNN

DPU: Deep Learning Processing Unit

Vector-based SIMD processors

becoming increasingly customized for Deep Learning

(Tensor Cores, Reduced Precision,…)

© Copyright 2018 Xilinx

Range of architectural solutions for Inference on FPGA

Intermediate variations

layer buffers

Weights,

Thresholds

Systolic array processor architecture

XDNN

Deephi DPU

Weights, Thresholds

Dataflow

Direct synthesis

of the Neural Network

FINN, HLS based research solution

Optimal resource use

Compiler + processor

IP is labor intensive

Scalable for devices

Flexible for bit-precisions

On-chip memory limits

Different Systolic architectures

e.g. Deephi for CNN

and RNN, LSTM

© Copyright 2018 Xilinx

DPU Specialization

Spectrum of Options

layer buffers

Weights,

Thresholds
Weights, Thresholds

Xilinx FINN
https://github.com/Xilinx/FINN

https://github.com/Xilinx/BNN-PYNQ

https://github.com/xilinx/LSTM-PYNQ

Using Pynq see

http://pynq.io/ml

Xilinx DPU
XDNN (Cloud/CNN)

Aristotle (Edge/CNN)

Descartes (Edge/Cloud LSTM)

https://github.com/Xilinx/ml-suite

http://deephi.com

Focus on direct

Implementation

With reduced

Precision

Open Source

https://github.com/Xilinx/FINN
https://github.com/Xilinx/BNN-PYNQ
https://github.com/xilinx/LSTM-PYNQ
http://pynq.io/ml
http://deephi.com/

© Copyright 2018 Xilinx

FINN: Reduced Precision and retraining

Float.

Model

Reduced

Model

Retraining

Retraining

Notation: 3b/5b: 3 bit weights/ 5 bit activation

Reduce Precision

“cat”X

Reduced

Model

Reduced

Model

© Copyright 2018 Xilinx

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1.0 10.0 100.0 1000.0 10000.0 100000.0 1000000.0 10000000.0 100000000.0 1000000000.0

V
A

L
.
E

R
R

O
R

 (
%

)

COMPUTE COST (LUTS + 100*DSPS)

IMAGENET CLASSIFICATION TOP5% VS COMPUTE COST F(LUT,DSP)

1b weights 2b weights 5bit weights 8bit weights FP weights minifloat ResNet-50 Syq

FINN: Design Space Exploration

Resnet18

8b/8b

Compute Cost 286

Error 10.68%

Resnet50

2b/8b

Compute Cost 127

Error 9.86%

Pareto-optimal solutions

© Copyright 2018 Xilinx

FINN Concepts dataflow implementation of Neural
Networks

• Each layer custom

parameters

• Number of Bits

• Scaling factor

• Folding factor

Graph in

Framework

runtime

Weights, Thresholds

© Copyright 2018 Xilinx

˃ One hardware layer per BNN layer, parameters built into bitstream,

˃ Design for balanced throughput

Allocate compute resources according to FPS and network requirements

˃ Streaming: Maximize throughput, minimize latency

Overlapping computation and communication, batch size = 1, sliding windows between the layers

Heterogeneous Streaming Architecture

Layer 0 Layer 1 Layer N

…image result

FPGA

BNN topology

1
M

 o
p
s

1
0
M

 o
p
s

1x PE 10x PE10x PE 100x PE

© Copyright 2018 Xilinx

FINN: for binarized neural networks, training in Caffe

Ingest Neural

Network Topology

and Weights

Streamline

Network Topology

and Scale

Hardware

Performance

Model

Generate and

Synthesize

Hardware bit file

Deploy to target

Platform

Target Platform

Descriptor File

© Copyright 2018 Xilinx

BNN- PYNQ: reduced precision networks + training

Theano and
BinaryNet

•Training Scripts
available for
network
examples

•How-to set-up
the training
environment

•Support for
arbitrary
precision on
Theano

Network
parameters
exporting

•Python scripts
to export
weights and
generate
thresholds @
target precision

•Loaded at run-
time

Network
description in
VHLS (C++)

•Relying on a
validated HLS
library

•Including all
most common
layers

•Examples
available for
multiple
networks and
multiple
precisions

Bitstream
generation

• Scripts
targeting
multiple
supported
platforms
(PYNQ-Z1,
PYNQ-Z2,
Ultra96)

Runtime for
PYNQ platforms

•Stack of SW,
wrapped in a
python class
easy to use in
jupyter
environment

© Copyright 2018 Xilinx

LSTM – PYNQ: environment for LSTM with training

Pytorch-ocr

•Small training
library for OCR
with Pytorch
using a LSTM-
based network

•Can be
extended to
different OCR
datasets

•Export of a
trained
quantized
network’s
description and
weights

Pytorch-
quantization

•Support for
training of
quantized
LSTMs and FC
at arbitrary
multi-bit
precision

•Low-level export
API of quantized
layers

Network
description in
VHLS (C++)

•HLS library for
BiLSTM
acceleration

•Takes in
network’s file
generated by
Pytorch

Bitstream
generation

• Scripts
targeting PYNQ-
Z2

•Baked in per-
network weights
and config

Runtime for
PYNQ platforms

•Stack of SW,
wrapped in a
python class
easy to use in
jupyter
environment

© Copyright 2018 Xilinx

Repositories

˃ https://github.com/Xilinx/FINN

˃ https://github.com/Xilinx/BNN-PYNQ

˃ https://github.com/xilinx/LSTM-PYNQ

˃ https://github.com/Xilinx/pytorch-quantization

˃ https://github.com/Xilinx/pytorch-ocr

˃ https://github.com/Xilinx/QNN-MO-PYNQ

˃ http://www.pynq.io

˃ http://www.pynq.io/ml

˃ https://github.com/Xilinx/ml-suite

˃ http://www.ultra96.org

˃ http://deephi.com

https://github.com/Xilinx/FINN
https://github.com/xilinx/LSTM-PYNQ
https://github.com/Xilinx/pytorch-quantization
https://github.com/Xilinx/pytorch-ocr
https://github.com/Xilinx/QNN-MO-PYNQ
http://www.pynq.io/
http://www.pynq.io/ml
https://github.com/Xilinx/ml-suite
http://www.ultra96.org/
http://deephi.com/

© Copyright 2018 Xilinx

Publications

˃ FPL’18: FINN-L: Library Extensions and Design Trade-off Analysis for Variable Precision LSTM Networks on FPGAs

˃ FPL’18: BISMO: A Scalable Bit-Serial Matrix Multiplication Overlay for Reconfigurable Computing

˃ FPL’18: Customizing Low- Precision Deep Neural Networks For FPGAs

˃ ACM TRETS, Special Issue on Deep Learning: FINN-R: An End-to-End Deep- Learning Framework for Fast Exploration

of Quantized Neural Networks

˃ ARC’18: Accuracy to Throughput Trade-Offs for Reduced Precision Neural Networks on Reconfigurable Logic

˃ CVPR’18: SYQ: Learning Symmetric Quantization For Efficient Deep Neural Networks

˃ DATE’18:Inference of quantized neural networks on heterogeneous all-programmable devices

˃ ICONIP’17: Compressing Low Precision Deep Neural Networks Using Sparsity-Induced Regularization in Ternary

Networks

˃ ICCD’17: Scaling Neural Network Performance through Customized Hardware Architectures on Reconfigurable Logic

˃ PARMA-DITAM’17: Scaling Binarized Neural Networks on Reconfigurable Logic

˃ FPGA’17: FINN: A Framework for Fast, Scalable Binarized Neural Network Inference

˃ H2RC’16: A C++ Library for Rapid Exploration of Binary Neural Networks on Reconfigurable Logic

https://arxiv.org/pdf/1807.04093.pdf
https://arxiv.org/pdf/1806.08862.pdf
http://kalman.mee.tcd.ie/fpl2018/content/pdfs/FPL2018-43iDzVTplcpussvbfIaaHz/XZmyRhWvHACdwHRVTCTVB/6jfImwD836ibhOELmms0Ut.pdf
https://arxiv.org/abs/1809.04570
https://arxiv.org/pdf/1807.10577.pdf
https://arxiv.org/abs/1807.00301
https://ieeexplore.ieee.org/abstract/document/8342121/
https://arxiv.org/abs/1709.06262
https://ieeexplore.ieee.org/abstract/document/8119246/
https://arxiv.org/abs/1701.03400
https://arxiv.org/abs/1612.07119
https://h2rc.cse.sc.edu/2016/papers/paper_25.pdf

© Copyright 2018 Xilinx

Presented By

Gordon Brebner

Distinguished Engineer

1 October 2018

Conversation with Xilinx Research Labs:

P4 and NetFPGA

© Copyright 2018 Xilinx

Open source programmable networking on FPGA

P4 programming language for packet processing NetFPGA platform for line-rate packet processing

Automated workflow for running P4 on NetFPGA

© Copyright 2018 Xilinx

Benefits of Programmable Networking (… or FPGA in fact)

C
• Control and Customization. Make switch or SmartNIC behave exactly as you want

R
• Reliability. Reduce risk by removing unused features

E
• Efficiency. Reduce energy consumption and expand scale by doing only what you need

A
• Add new features on your schedule

T
• Telemetry. Be able to see inside the network

E
• Exclusivity and Differentiation. Add secret sauce to vendor offerings

© Copyright 2018 Xilinx

P4
Programming Protocol-independent Packet Processors

˃ Language first appeared in paper published in July 2014

˃ Three goals:

Reconfigurability in the field – reprogramming of networking equipment

Protocol independence – not tied to any specific networking protocols

Target independence – not tied to any specific networking hardware

˃ P4 consortium (P4.org) set up in 2015 – now an open source Linux Foundation project

Xilinx was a founding member of P4.org

Now has >100 members

˃ P4 has emerged as the de facto standard language for packet processing

© Copyright 2018 Xilinx

P4 language elements

Architecture

Extern Libraries

Programmable blocks

and their interfaces

Support for specialized

components

Data Types
Bit-strings, headers,

structures, arrays

Controls
Match-Action Tables,

control flow statements

Parsers

Expressions
Basic operations

and operators

State Machines,

bit-field extraction

Packet processing pipeline

© Copyright 2018 Xilinx

P4 “Hello World” (networking style) example
#include <core.p4>
#include <XilinxSwitch.p4>
struct user_meta_t {}
struct headers {}

parser MyParser(packet_in packet, out headers hdr,
inout user_meta_t meta,
inout std_meta_t std_meta) {

state start { transition accept; }
}

control MyPipe(inout headers hdr, inout user_meta_t meta,
in std_meta_t std_meta) {

action set_egress_port(bit<9> port) {
std_meta.egress_port = port;

}
table forward {

key = { std_meta.ingress_port: exact; }
actions = {

set_egress_port;
NoAction;

}
size = 1024;
default_action = NoAction();

}
apply { forward.apply(); }

}

control MyDeparser(packet_out packet, in headers hdr) {
apply { }

}

XilinxSwitch(MyParser(), MyPipe(), MyDeparser()) main;

Key Action Name Action

Data

1 set_egress_port 2

2 set_egress_port 1

© Copyright 2018 Xilinx

P4 ecosystem

Community-developed

P4

Language

P4 Core Library

Vendor-supplied

Extern

Libraries

Architecture

Definition

P4

Compiler

User-developed

Application Application

Application Application

Data plane: P4

and

Control plane: C, Python, etc.

© Copyright 2018 Xilinx

P4 Architecture

Model

P4 Compiler

Target-specific

configuration

binary

Data PlaneTables
Extern

objects
Load

Platform

Vendor supplied

P4 Program

User supplied

Control Plane

Add/remove

table entries

CPU port

Packet-in/outExtern

control

R
U

N
T

IM
E

Programming and operating a P4 platform

© Copyright 2018 Xilinx

Xilinx P4-SDNet product (www.xilinx.com/sdnet)

Xilinx P4 Compiler

% sdnet example.p4

example.sv

example.bit

Verification Environment

System Verilog

testbench

High level C++

testbench

Run time

drivers
Top level Verilog

wrapper

Verilog

components

Example target: Xilinx P4-Smart NIC card

Xilinx Labs prototype (May 2017):

• First-ever P4-2016 compiler

• 100G line rate

Production version (Dec 2018):

• 50% less latency and resources

© Copyright 2018 Xilinx

P4-SDNet research community today:
60 institutions in 22 countries

Canada: 2

USA: 13

Brazil: 3

China: 7

India: 1

Israel: 1

Japan: 1

South Korea: 2

Taiwan: 5

Bosnia: 1

France: 2

Germany: 4

Ireland: 1

Italy: 3

Poland: 1

Romania: 1

Russia: 1

Serbia: 1

Spain: 3

Sweden: 1

Switzerland: 2

UK: 4

© Copyright 2018 Xilinx

NetFPGA (= Networked FPGA)

˃ Line-rate, flexible, open networking platform for teaching and research

˃ Community began with Stanford and Xilinx Labs, now anchored at Cambridge

˃ NetFPGA systems deployed at over 150 institutions in over 40 countries

Four elements:

˃ Community: NetFPGA.org

˃ Low-cost board family

˃ Tools and reference designs

˃ Contributed projects

NetFPGA-SUME

4x10G ports

© Copyright 2018 Xilinx

NetFPGA SUME reference switch design

˃ 4x10G Ethernet switch, with CPU slow path as 5th port

˃ Five-stage pipeline:

Input ports

Input arbitration

Forwarding decision and packet modification

Output queuing

Output ports

˃ Standard module interfaces

˃ Modules can be customized or substituted

© Copyright 2018 Xilinx

P4NetFPGA workflow overview

P4 Program

Xilinx P4-SDNet

NetFPGA SUME reference switch design

Drop-in substitute

© Copyright 2018 Xilinx

P4NetFPGA workflow steps

1. Write P4 program

2. Write additional externs (if required)

3. Write python test packet script

4. Compile to Verilog / Generate API & CLI tools

5. Run simulations to test/debug

6. Build bitstream

7. Check implementation reports

8. Test on the hardware

All of the user

effort goes here –

not on the FPGA

detail

im
p

le
m

e
n

t
it

e
ra

te

© Copyright 2018 Xilinx

P4NetFPGA community

˃ 150 active members from academia and industry around the world, and growing

˃ Members of the community highly encouraged to contribute in ways such as:

New P4 projects

Extra extern functions

Performance analysis tools

Verification tools

˃ Used for research, and for teaching networking concepts on real hardware

No hardware design experience needed

˃ Some current projects

Distributed congestion control

In-band Network Telemetry

In-network compression; In-network key-value cache

Network-accelerated sorting; Network-accelerated consensus

˃ Getting started:

Public documentation: https://github.com/NetFPGA/P4-NetFPGA-public/wiki

https://github.com/NetFPGA/P4-NetFPGA-public/wiki

© Copyright 2018 Xilinx

Research directions

˃ Language: Extend coverage of P4

Programmable Traffic Management (MIT + NYU + Stanford + Xilinx Labs + P4.org)

Programmable Target Architectures (Cornell + Stanford + Xilinx Labs)

˃ Infrastructure: Open source hardware reference platform for P4

Complement existing software reference platform

Cover NIC-style architectures as well as switch-style architectures

˃ Applications

Programmable networking offload and acceleration

Congestion control, in-band network telemetry

In-network computing

… your ideas here

© Copyright 2018 Xilinx

Presented By

Alireza Kaviani, Ph.D.

Distinguished Engineer,

Xilinx Research Labs

Oct 1, 2018

RapidWright1:
Modular pre-implemented methodology

Wright1 = maker or builder

© Copyright 2018 Xilinx

RapidWright value proposition

IMPLEMENTATION COMPILE TIME

P
E

R
F

O
R

M
A

N
C

E

ASICs

CPUs

FPGAs +

Pre-

implemented

blocks

RapidWright

FPGAsFPGAs

+ Shells

SDx

© Copyright 2018 Xilinx

Focus on emerging applications

˃ Module-based approach to implementation

Lock-in performance with reusable modules

Fewer inter-block timing closure issues

PE0,0

PE0,1

PE0,2

PE0,3

PE1,0

PE1,1

PE1,2

PE1,3

PE2,0

PE2,1

PE2,2

PE2,3

PE3,0

PE3,1

PE3,2

PE3,3

Acc0 Acc1 Acc2 Acc3

MEM

0

MEM

1

Designs with

ReplicationLatency-flexible

Connectivity

˃ Advantages

>10X reduction in compile time

Near-spec performance

Predictable timing closure

© Copyright 2018 Xilinx

Vision: Rapid accelerator assembly

C Code

Data Flow

Parser

+ PCIe + MIG

∆

Implementation Time ~ 6 mins ~1-3Hours 10-30X

Accelerator Fmax ~700MHz ~450MHz ~1.5X

© Copyright 2018 Xilinx

RapidWright overview

˃ Enables targeted solutions

Reuse & relocate pre-implemented
modules

Just-in-time implementations

Create shells & overlays

˃ Companion framework for Vivado

Communicates through Design
CheckPoints1 (DCPs)

Fast, light-weight, open source

Java, Python coding

˃ Power user ecosystem

Academic algorithm validation

Rapid prototyping of CAD concepts

.DCP

.DCP

.DCP

.DCP

.DCP

.DCP

synth_design

opt_design

place_design

phys_opt_design

route_design

phys_opt_design

Checkpoint

Reader

Checkpoint

Writer

Domain Specific

“Shell creator”

or

“JIT assembler”

or

…

1: DCP contains netlist + P&R info + constraints

© Copyright 2018 Xilinx

RapidWright

(Block Assembly,

P&R)

MEM

Acc

PE

Block

“Cache”

Vivado

OOC

Flow

A Modular pre-implemented methodology

PE0,0

PE0,1

PE0,2

PE0,3

PE1,0

PE1,1

PE1,2

PE1,3

PE2,0

PE2,1

PE2,2

PE2,3

PE3,0

PE3,1

PE3,2

PE3,3

Acc0 Acc1 Acc2 Acc3

MEM

0

MEM

1
Match Design Structure to

Architecture Patterns
(netlist + constraints)

DOMAIN DESIGN TASKS

1. Design selection attributes:

• Modular

• Latency tolerant

• Prefers replication

2. Placement planning

IMPLEMENTATION TOOL TASKS

3. P&R modules cached:

• Relocatable

• Reusable

• Timing predictable

4. Run implementation

© Copyright 2018 Xilinx

Building relocatable domain-specific shells

˃ Fact

Advances in silicon have created QoR opportunity

˃ Community role

Domain-specific shell design or overlays

˃ RapidWright value proposition

Achieve near-spec performance

Back-end compiler

Shell /

overlay

spec

0

100

200

300

400

500

600

700

800

900

Series 7 (28ns) UltraScale (20ns) UltraScale+ (16nm)

M
H

z

Logic & DSP

BRAM

Out of the box Fmax

The QoR

Opportunity

© Copyright 2018 Xilinx

RapidWright pre-implemented module flow

Route

Design

Design

Parser

Block

Assembler
Block

Placer

User

Design

Block

Cache

Final

Impl.

Fully Placed,

Partially Routed

Implementation

© Copyright 2018 Xilinx

Design performance results

Design Target

Device

Baseline

(initial design)

RapidWright1

Flow
Gain

Seismic KU040 270MHz 390MHz 41%

FMA KU115 270MHz 417MHz 54%

GEMM KU115 391MHz 462MHz 16%

ML overlay ZU9EG 368MHz 541MHz 50%

Design LUT FF DSP BRAM

Seismic 93% 5% - -

FMA (HPC design) 25% 50% 97% 6%

GEMM 19% 20% 87% -

ML overlay 46% 29% 42% 96%

Speed Grade: -2

Utilization table

1: RapidWright: Enabling Custom Crafted Implementations for FPGAs, FCCM 2018

© Copyright 2018 Xilinx

Fully Connected Network (FCN) accelerator

˃ Fully Connected Network Accelerator (FCN)

GEMM + ReLU (activation function)

BRAM and DSP Utilization higher than 80%

Goal: fit four compute kernels on F1

˃ Regular Host Interconnect

2 compute Kernels (@ 200 MHz) fit

‒ Three kernels does not route, due to overhead of data movement

˃ LinkBlaze1 Host Interconnect

Three kernels (@ 200 MHz) fully placed & routed

TODO: Split into 2 slides

-Organize like Alma

Shell

FCN

FCN

SCFCN
L

B

1: LinkBlaze: Efficient global data movement for FPGAs., Reconfig 2017

© Copyright 2018 Xilinx

Fully Connected Network (FCN) accelerator

˃ Fully Connected Network Accelerator (FCN)

GEMM + ReLU (activation function)

BRAM and DSP Utilization higher than 80%

Goal: fit four compute kernels on F1

˃ Regular Host Interconnect

2 compute Kernels (@ 200 MHz) fit

‒ Three kernels does not route, due to
overhead of data movement

˃ LinkBlaze1 Host Interconnect

Three kernels (@ 200 MHz) fully placed & routed

4x Kernels with relocatable modular design will fit
TODO: Split into 2 slides

-Organize like Alma

Enabling 33% More Compute

FCN

FCN

Shell

FCN
L

B

FCN

FCN

FCN

FCN

FCN

FCN

FCN

FCN

FCN

FCN

FCN

FCN

FCN

FCN

FCN

FCN

FCN

1: LinkBlaze: Efficient global data movement for FPGAs., Reconfig 2017

© Copyright 2018 Xilinx

Pre-implemented data movement shell

˃ Goals

Minimize overhead of compute (and overlays)

Prove shell assembly model

˃ Build-to-order LinkBlaze shell

512 bit, bi-directional

RapidWright Pre-implemented modules

DDR

Compute

kernels

AWS

Shell

(DDR &

PCIe)Vivado RapidWright

516MHz 620MHz (+20%)

DDR

DDR

Compute

kernels

Compute

kernels

Compute

kernels

© Copyright 2018 Xilinx

Open Source Community

Call for Action

© Copyright 2018 Xilinx

Xilinx and
open source
community

Academic and
industrial

community

Domain-specific

data flow graph

(LLVM) compiler

Application in

Domain 2

Application

in Domain 3

Proposed domain-specific tool flows

Application

in Domain 1

Developers

Driving Design

Data scientists,
application
architects

Back-end

compiler

Front-end

Compiler

Design

Entry

High abstraction

Domain-specific

language

Relocate pre-

implemented

operators and

functions

Tools and

Frameworks

© Copyright 2018 Xilinx

Domain tool flow example

˃ Fact

Emerging domains such as surveillance or vision have high replication

˃ Community role

Identify and extract operators and functions in the domain

˃ RapidWright value proposition

Assemble relocatable pre-implemented domain operators

Deliver the best inference/watt

Back-end compiler

Design Entry Front-end Compiler

© Copyright 2018 Xilinx

Beyond a pre-implemented
methodology

˃ RapidWright probe router enables higher productivity

21X more debug turns per day

Highest level of routing preservation possible

Future innovation:

‒ iteration with extra probe inputs

‒ Automatic insertion of pipeline flops to manage timing

Vivado

modify_debug_probes

RapidWright

ProbeRouter
∆

130 mins 6.3 mins 21X

Original

RapidWright Probes Rerouted

ILA Cells

Probe Routes

© Copyright 2018 Xilinx

Vision: Pre-implemented modules

PROBLEM SIZE

C
O

M
P

L
E

X
IT

Y
 /
 D

IF
F

IC
U

L
T

Y

Parameterizable

Circuit Generators

Algorithmic Engines

(SAT Solvers, ILP,…)
+

Vivado-optimized OOC

Solutions

www.rapidwright.io

© Copyright 2018 Xilinx

Presented By

Presented By

Hugo Andrade

Director, Xilinx University Program

© Copyright 2018 Xilinx

What we do
Empower academic teaching, research, and

entrepreneurship with Xilinx technologies

© Copyright 2018 Xilinx

Who we are

˃ Global university engagement

Americas/RoW, EMEA, APAC

˃ Americas/RoW and world-wide contacts

Naveen PurushothamDr. Parimal Patel Hugo A. Andrade Patrick Lysaght

© Copyright 2018 Xilinx

How we can help

˃ Vivado

˃ HLS

˃ SDx: SDSoC, SDaccel

˃ Zynq

˃ MPSoC, RFSoC

˃ Ultrascale+

˃ Conferences

˃ Workshops

˃ Summer Schools

˃ Research enablement

˃ Teaching Material

˃ Reference designs

˃ Technical Support

˃ Design Contests

˃ Hackathon

˃ Startup program

˃ Cloud access

Access to tool and IP licenses, academic boards and chips

© Copyright 2018 Xilinx

New Zynq Ultrascale+ MPSoC book with ML

Coming in 2019

© Copyright 2018 Xilinx

New open source HLS book

http://kastner.ucsd.edu/hlsbook/

http://kastner.ucsd.edu/hlsbook/

© Copyright 2018 Xilinx

Global engagement and collaboration

© Copyright 2018 Xilinx

Key Initiatives
• FPGA-based accelerators in the cloud

• PYNQ: Python productivity for Zynq

© Copyright 2018 Xilinx

Promote & support AWS EC2 F1 in academic community

˃ An AWS EC2 compute instance with Xilinx FPGAs which can be programmed to

create custom hardware accelerated applications

˃ F1 instances are easy to program and come with everything needed to develop,

simulate, debug, and compile hardware accelerators

˃ Can be registered as an Amazon FPGA Image (AFI) and marketed

© Copyright 2018 Xilinx

FPGA18, Monterey

Latest technology training at top conferences

Expanded conference categories covered

˃ FPGA

˃ Computer Architecture and HPC

˃ Applications

© Copyright 2018 Xilinx

Promote & support AWS EC2 F1 based courses

˃ UC Berkeley, Prof. Krste Asanović

Computer Architecture & Engineering

“An important part is lab assignments using real microprocessor designs implemented in
Chisel, running as simulators and FPGA emulators in the Amazon cloud as F1 instances.“

˃ Cornell, Prof. Zhiru Zhang

High-level Digital Design Automation

˃ UCLA, Prof. Jason Cong

Customizable Computing for Big Applications

Parallel and Distributed Computing

˃ Coursera, Politecnico di Milano, Prof. Marco Domenico Santambrogio

FPGA-accelerated Cloud Applications with SDaccel

© Copyright 2018 Xilinx

Let’s chat further about:
• Opportunities in teaching, research and

entrepreneurship using AWS EC2 F1

• How to get AWS credit vouchers

• Hand-on training

© Copyright 2018 Xilinx

Updated 2018.x workshop material now on PYNQ boards

© Copyright 2018 Xilinx

Promote and support PYNQ hackathons

30 hours 45 participants

Industry and academia

© Copyright 2018 Xilinx

Reaching XUP

www.xilinx.com/xup

xup@xilinx.com

© Copyright 2018 Xilinx

