
Presented By

Feng Tian

Founder

Deepgreen MPP with FPGA:

A supercharged Greenplum Data Warehouse solution

Agenda: Building Next Gen Data Analytics Platform

˃ Why NOW?

˃ How to Accelerate Data Warehouse with FPGA

˃ Use Cases

It’s Time for a complete rewrite

˃ New Application Landscape

˃ Rich Data

Text

IoT, Geospatial

Media

˃ Intelligent Data

Query getting more complex

Geospatial

Machine learning/Data mining

AI/Deep learning

ACM Turing Award Winner

Time for a complete rewrite: Hardware Trend

˃ Storage Hierarchy

Big Memory

SSD

 Plenty of Bandwidth

˃ Network

10, 100 GigE is common

 Plenty of Bandwidth

>>>> Today, most Data Workload is bottlenecked on CPU <<<<

˃ FPGA can relief CPU

A New Golden Age for Computer Architecture

˃ Domain Specific Hardware/Software Co-Design

˃ Enhanced Security

˃ Open Instruction Set

˃ Agile Chip Development

Data, Data Everywhere …

Actionable Insight

Deepgreen DB: a better Greenplum Data Warehouse

˃ Greenplum

Field tested with widespread adoption in Telco, Financial, Government, Retails, …

˃ Deepgreen

We squeezed every bit of juice out of x86 CPUs

100% compatible

Zero code-change to switch

Complete rewrite of Query Execution Engine

‒ LLVM JIT

‒ SIMD

‒ Switch binary (without reloading data) to get 3-5x performance boost.

‒Now even faster with FPGA!

Deepgreen: FPGA Hardware Acceleration

˃ LLVM JIT + SIMD

We squeezed CPU dry

˃ Next frontier:

FPGA

FPGA In Deepgreen

Challenges Our Approach

Memory is big, but not big enough

Throughput vs Latency

Multi-CPU/Core

Multiuser environment

 Identify the bottleneck

New algorithm tuned for FPGA

Offload to FPGA, none preemptive

XLIW: eXtra Long Instruction Word

XLIW: eXtra Long Instruction Word

Kernel

K

K

XLIW: Hasher

Data, Data, Data …

Reslut R R

Result R R

Result R R

XLIW XLIW XLIW

XLIW XLIW XLIW

XLIW XLIW XLIW

XLIW: Hasher

Data, Data, Data …

Use Case 1: Hash Join

SELECT count(*)
FROM lineitem L1, orders O
WHERE O.o_orderkey = L1.l_orderkey

AND EXISTS (

SELECT *
FROM lineitem L2
WHERE L2.l_orderkey = L1.l_orderkey
AND L2.l_suppkey <> L1.l_suppkey

)

HashJoin

HashJoin

L1

L2

O

Use Case 1: Hash Join Implementation

Hash Join XLIW for Hash Join

 HJ Algorithm (expressed trivially):

1. Scan left side and build hash table

2. Scan right side, and probe hash table

3. Output all hits

 Lots of records joined

 Hash table is not cache friendly

 Pack a lot of records of left side, send to FPGA to

compute hashes

 Instead of using hash table, we sort the hashes

using a very fast radix sort. (10x faster than

quicksort)

 Pack a lot of records from right side, send to FPGA

to compute hashes. Sort with radix sort

 Merge

 It is a hybrid hash/sort merge join

0

50

100

150

200

250

Q17 Q20

Greenplum Deepgreen Deepgreen + XLIW

Use Case 1: Hash Join Performance

Time (sec)

2.7X

13X faster 2X
7X faster

TPCH Q17 and Q20 on AWS F1

Use Case 2: GeoSpatial Join

/* count devices covered by each cell tower */

SELECT t.tower_id, count(*)
FROM towers t, devices d
WHERE ST_intersects(t.area, d.location)
GROUP BY t.tower_id

Use Case 2: GeoSpatial Join

Greenplum + PostGIS GeoSpatial Join + XLIW

 PostGIS is the GeoSpatial extension of

PostgreSQL/Greenplum/Deepgreen

 Naïve Join will never finish

 Build index (R-tree)

 Index Nestloop Join

o For each polygon, using index to lookup points

nearby

o Check the intersects condition

 Do not use index

 Scan outer loop, build an in-memory data structure

 Still expensive operation, but cheaper than

compute intersection (like building an R-tree)

 Scan inner loop, probing the in memory data

structure (like probing R-tree)

 Check intersection

 This step is dominating execution time

 Build/Pack XLIW instruction, send to FPGA

Use Case 2: Performance

0

100

200

300

400

500

600

700

800

900

CPU only CPU + FPGA

~50X faster

Geospatial JOIN
Time (sec)

Use Case 3: Adding Intelligence (Available Soon)

˃ An XLIW for data mining/machine learning

˃ Deepgreen Transducer Framework

Allow user to embed C/Java/Go/Python code in SQL

Interleaved with SQL Engine code

First class citizen, optimized by query optimizer, executed in parallel, streaming data to/from
SQL query operators like Sort/Join/Aggregate

˃ ML libraries, Tensor Flow

For example, Deep Neural Network in FPGA

Current Status and Future Directions

˃ Deepgreen DB on AWS F1

See our demo

On AWS Market Place (2018)

˃ On-prem deployment with Alveo Accelerator Card

Looking for early customers

˃ We are just scratching the surface

More use cases, endless opportunities

More to squeeze

Adaptable.

Intelligent.

