
© Copyright 2018 Xilinx

Presented By

Yu Wang

Associate Professor, Dept. of E.E., Tsinghua University

Co-founder of DeePhi Tech.

Efficiently Training CNN with FPGA

© Copyright 2018 Xilinx

An Era of Deep Learning

2

ADAS

Neural
Network

Cloud service

Smart phone Camera

Everything & Everywhere

© Copyright 2018 Xilinx

Two Stages in Deep Learning: Training and Inference

3

Rocket: Deep learning

Fuel：Big data

Engine：Computing platform

According to Prof. Andrew Ng

Training
 How accurate the model can be

Inference
 How many applications can use DL

84.70%

88.30%

93.30%
96.40%

97.00%

Top-5 Accuracy

Server

Clien
t

Clien
t

Clien
t

© Copyright 2018 Xilinx

Efficient inference has been highly focused on

4

Performance

100TOPS

10TOPS

1TOPS

100GOPS

10GOPS

0.001 0.01 0.1 1 10 100 1000

NVIDIA

Xavier

Cambricon

DianNao

Mobileye

EyeQ4

ASIC

FPGA

GPU

Power (W)

DeePhi

Tingtao

地平线
旭日&征程

A latest version can be found at: https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/

FPGA can achieve similar energy efficiency to ASIC and GPU

© Copyright 2018 Xilinx

What about training?

˃ Training is also heavy work!

5

Samples
labels

loss

Update

Workload = #Samples × (Inference+Update) × #Iterations

~106 ~1010 FLOPs ~100

× 4 × 60hr

NVIDIA Titan Xp (TDP 250W)

Inference

Training a VGG model on ImageNet dataset:

© Copyright 2018 Xilinx

We also need energy efficient training

˃ For cloud services:

The building cost of a data center is about 10000-20000$/kW1

6

• For end applications:
• changing environment -> changing model

• Platform power limitation

• Car: 10-100w

• Satellite: hard to dissipate heat

cloud

training

unstable privacy

local
training

backend

training
local

training
1 Kontorinis V, Zhang L E, Aksanli B, et al. Managing distributed ups energy for effective power capping in data centers[C]//Computer Architecture (ISCA), 2012 39th Annual

International Symposium on. IEEE, 2012: 488-499.

© Copyright 2018 Xilinx

What does training do?

˃ Stochastic Gradient Descent (or other variants)

7

Inference

y=W·x

Calculate the error
of output

δy

Update

δW=δy·x’

W=W+λ·δW

Back-propagate

δx=δy·W’

• Similar to inference, the main workload of training is still sum of product

• Maybe we can do the same things as for inference

© Copyright 2018 Xilinx

What we have done with inference

8

Core API

Driver

Runtime

Loader

Profiler

DPU Platform

DL Framework

Compression

Pruning Quantization

Compilation

Compiler Assembler

ASIC

Software-Hardware
Co-design

© Copyright 2018 Xilinx

Techniques for inference: Software-Hardware Co-design

˃ Quantization

9

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

GoogLeNet VGG-16 SqueezeNet VGG-CNN-F

fp-32 16-bit 8-bit 6-bit

Negligible accuracy loss with
8-bit fixed-point weight & activation1 Save FPGA resources

1 Guo K, Han S, Yao S, et al. Software-Hardware Codesign for Efficient Neural Network Acceleration[J]. IEEE Micro, 2017, 37(2): 18-25.

© Copyright 2018 Xilinx

Techniques for inference: Software-Hardware Co-design

˃ Sparsification1

10

Negligible WER increase with
10% weights

6x acceleration with
customized hardware

1 Han S, Kang J, Mao H, et al. Ese: Efficient speech recognition engine with sparse lstm on fpga[C]// ISFPGA, 2017: 75-84.

© Copyright 2018 Xilinx

Q: Can we take everything from
inference to training?

11

A: Things are different!

© Copyright 2018 Xilinx

Challenges

˃ Quantization for training is more difficult than for inference1

12

Baseline：36.7/15.3

High accuracy v.s. Narrow bitwidth

1 Wu S, Li G, Chen F, et al. Training and Inference with Integers in Deep Neural Networks[J]. arXiv preprint arXiv:1802.04680, 2018.

© Copyright 2018 Xilinx

Challenges

˃ Pruning is applied when the network is well trained1

13

Cannot be accelerated

utilizing sparsity

Can be accelerated

utilizing sparsity

Using sparsity only brings more
workload to training

1 Han S, Pool J, Tran J, et al. Learning both weights and connections for efficient neural network[C]//NIPS. 2015: 1135-1143.

training pruning fine-tune

75hr 173hr

Training

Sparse

Network

training

75hr

Normal

Training

© Copyright 2018 Xilinx

Opportunity

˃ Previous hardware only utilizes operand sparsity

C=ΣAB (A and B can be sparse)

Apply to inference and back-propagate phases

14

ESE1 SCNN2

1 Han S, Kang J, Mao H, et al. Ese: Efficient speech recognition engine with sparse lstm on fpga[C]// ISFPGA, 2017: 75-84.
2 Parashar A, Rhu M, Mukkara A, et al. Scnn: An accelerator for compressed-sparse convolutional neural networks[C]//ISCA, 2017: 27-40.

• We should also utilize result sparsity
• C=ΣAB (C is sparse)

• Apply to update phase: δW=δy·x’

© Copyright 2018 Xilinx

Our Solution

1. A training process with fixed-point gradient, activation, weight

32-bit float multiplication -> 8-bit fixed-point multiplication

8x energy saving

2. Pruning before the training process converge

Reduce floating point training process to 1/3

3. Customized FPGA accelerator design to accelerate the training of the sparse

model.

Potentially more than 3x speed up for the largest layers

15

• Data pre-
processing

• Floating-
point training

CPU/GPU

• Pruning
• Encode

sparsity
• Quantization

CPU

• Train the
pruned
network

FPGA

© Copyright 2018 Xilinx

Training with fixed-point data

16

˃ Replace all the floating point data with

fixed-point data

˃ Short bit-width for MAC: reduce

computation cost

˃ Long bit-width for weight storage: able

to accumulate small gradients
int 32

int 8

𝑊𝑖

FP

WG

EB

𝜕𝐸

𝜕𝑊𝑖

𝑦𝑖−1
𝜕𝐸

𝜕𝑦𝑖−1

𝑦𝑖
𝜕𝐸

𝜕𝑦𝑖

L
a
y
e
r

i

shift&cut

shift&cut shift&cut

© Copyright 2018 Xilinx

Pruning before convergence

˃ 2D-kernel-wise pruning for CONV layers

˃ Normal pruning for FC layers

˃ For the simplicity of hardware and sparse coding style

17

input

neuron 0
input

neuron M

input

channel 0
input

channel M

output

neuron 0

output

neuron N

output

channel 0

output

channel N

M×N fully connected layer
M×N channel convolution

layer with 3×3 kernels

© Copyright 2018 Xilinx

Pruning before convergence

˃ Dataset: CIFAR-10; Network: VGG-11

˃ Prune standard: <1% accuracy loss

18

0

10

20

30

40

50

60

70

80

90

100

30 60 90 120 150 180 210 240

R
a

ti
o

 o
f
P

ru
n

e
d

 W
e

ig
h

ts
 (

%
)

Epoch when apply pruning

conv1 conv2 conv3_1 conv3_2 conv4_1 conv4_2

conv5_1 conv5_2 dense6 dense_7 dense8

More than half of the weights can be pruned

© Copyright 2018 Xilinx

Pruning and Quantization

˃ Dataset: CIFAR-10; Network: VGG-11

˃ Weight: 32/24/16 bit; Activation: 8 bit

˃ 24bit weight and pruning as early as 60 epochs is enough for a good training result

© Copyright 2018 Xilinx

Hardware design

20

CPU

FPGA

Pre Stream Post Stream

PE 1

PE 2

PE N

DRAM

c
o
n
tr

o
lle

r

interconnect

PE
d
a
ta

 b
u
f

w
e
ig

h
t B

u
f

AGU

in
te

r-
P

E

c
o
n
n
e
c
ti
o
n

Pre Stream

res buf

MAC array

Post Stream

Y buf

X buf

CONV/FC cnt

CONV/FC cnt

M
U

X

P
re

 S
tr

e
a
m

C
o
n
tr

o
lle

r

……

FP: ReLU/Pooling

BP: Sum

BP: ReLU/Pooling/

FP&BP: CONV/FC

© Copyright 2018 Xilinx

Parallelism

˃ Batch is welcomed for training

 Parallel batch process

˃ Input / Output channel

！ Affected by sparsity

 Duplicate input channel and parallelize output channel

˃ Feature map pixel / Convolution kernel

！ Loop size varies greatly

 Configurable parallelism

21

Inference: 𝐹𝑗
𝑙 =

𝑖=0

𝑀−1

conv2d 𝐹𝑖
𝑙−1, 𝐾𝑖𝑗 + 𝑏𝑗 𝑗 = 0, 1, … , 𝑁 − 1

Update: 𝑑𝐾𝑖𝑗 = conv2d 𝐹𝑖
𝑙−1, 𝑑𝐹𝑗

𝑙 𝑗 = 0,… , 𝑁 − 1
𝑖 = 0,… ,𝑀 − 1

large

small

© Copyright 2018 Xilinx

Configurable parallelism

˃ Each PE locally do multiply and accumulate

˃ Inference: 4 PEs process 4 output pixels for 2D convolution in parallel

Data is shared within a group of PE to utilize the data locality

22

* =

© Copyright 2018 Xilinx

Configurable parallelism

23

• Each PE locally do multiply and accumulate

• Inference: 4 PEs process 4 output pixels for 2D convolution in parallel
• Data is shared within a group of PE to utilize the data locality

• Update: same with inference
• Waste the computation units!

×
×

 * =

© Copyright 2018 Xilinx

Configurable parallelism

˃ Each PE locally do multiply and accumulate

˃ Inference: 4 PEs process 4 output pixels for 2D convolution in parallel

Data is shared within a group of PE to utilize the data locality

˃ Update: 4PEs process a part of the gradient in parallel

Partial gradients are summed in a successive module

24

* =

© Copyright 2018 Xilinx

PE structure to support result sparsity

˃ Random access buffer for both input and output data

˃ Switch and MUX for index and address generation unit

25

X
Buf

Y
Buf

Idx addr Idx addr Idx addr

Counter

Conv/FC
Input
Addr

Counter

Conv/FC
Output
Addr

Counter

Index X Index Y

Data Buf
Addr

Param Buf
Addr

Res Buf
Addr

© Copyright 2018 Xilinx

Use Compressed Sparse Block (CSB) format

˃ FC layers: split the weight matrix into blocks and encode each element in a block with

a 2D coordinate.

˃ CONV layers: we split the kernels into channel blocks and encode each 2d kernel in a

block with a 2D coordinate.

˃ Transpose by switch both the 2D coordinate in hardware and the block order in

software

28

row

block

© Copyright 2018 Xilinx

Scheduling

29

7 8 9
2 3

4 5 6

7 8 9

load

PE0

PE1

PE2

1 2 3 4 5 6

1

2

3

4

5

6

A

B

C

D
E

F

7

8

9

Inference:
Each PE calculates
4 output channels

Input channel

O
u

tp
u

t
c
h

a
n

n
e

l

3 6 9
2 3

4 5 6

7 8 9

load

PE0

PE1

PE2

1 4 7 2 5 8

1

4

7

2

5

8

A

B

C

D
E

F

3

6

9

Back-propagate:
Each PE calculates
4 input channels

Input channel

O
u

tp
u

t
c
h

a
n

n
e

l

© Copyright 2018 Xilinx

Evaluation

˃ FPGA Platform: KCU1500 development board

˃ Hardware Parameter:

250MHz clock

32 PE, each with 32 MAC unit to process a batch of 32 images

2 DDR4-2400 external memory

30

˃ Bounded by on-chip memory

˃ Accumulation buffer occupies most of the RAMs because:

Large bitwidth (32 compared with 8 for data and param)

Ping-pong strategy to cover data transfer time

Ultra-RAM may relief this problem

© Copyright 2018 Xilinx

Evaluation

˃ Performance breakdown (simulation)

31

Computation Bounded

Memory Bounded

© Copyright 2018 Xilinx

Evaluation

32

Platform
TCAD 18 FPGA 17 ESE FCNN FPT17 FPDeep Proposed GPU Titan X

XC7Z020 GX1150 KU060 Maxeler MPC-X ZU19EG VC709 KCU1500 GM200

Function Inference Inference Inference Inference Training Training Training Inference Training Training

Quantization fixed 8 fixed 8/16 fixed 12 float 32 float 32 float 32 fixed 16 fixed 8 fixed 8/24 float32

Sparsity No No Yes No No No No Yes Yes No

Performance

(GOP/s)
84.3 645.25 2516 62.06 7.01 86.12

1022
897.5 641.1 1252

(Per FPGA)

Power (W) 3.5 21.2 41 N.A. 27.3 14.2 32 29 150

Energy Eff.

(GOP/s/W)
24.1 30.43 61.4 N.A. 0.27 6.05 31.97 30.95 22.11 8.4

˃ Performance comparison with state-of-the-art CNN inference/training accelerators

and GPU

© Copyright 2018 Xilinx

Future work

˃ More functions for training

BN layers, quantization for other optimizers

˃ Scaling up the design?

Reduce memory consumption by optimizing memory design

Lower down bandwidth requirement by optimizing scheduling

We also have HBM

˃ Improve energy efficiency?

More advanced training methods

˃ Evaluation with real training tasks

We never know if the method applies to a new application

33

© Copyright 2018 Xilinx

Adaptable.

Intelligent.

