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An Era of Deep Learning
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Two Stages in Deep Learning: Training and Inference
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Rocket: Deep learning

Fuel：Big data

Engine：Computing platform

According to Prof. Andrew Ng

Training
 How accurate the model can be

Inference
 How many applications can use DL
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Efficient inference has been highly focused on
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Performance
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A latest version can be found at: https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/

FPGA can achieve similar energy efficiency to ASIC and GPU
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What about training?

˃ Training is also heavy work!
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Samples
labels

loss

Update

Workload =    #Samples     × (Inference+Update)  × #Iterations

~106 ~1010 FLOPs ~100

× 4 × 60hr

NVIDIA Titan Xp (TDP 250W)

Inference

Training a VGG model on ImageNet dataset:
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We also need energy efficient training

˃ For cloud services:

The building cost of a data center is about 10000-20000$/kW1
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• For end applications:
• changing environment -> changing model

• Platform power limitation

• Car: 10-100w

• Satellite: hard to dissipate heat

cloud

training

unstable privacy

local
training

backend

training
local

training
1 Kontorinis V, Zhang L E, Aksanli B, et al. Managing distributed ups energy for effective power capping in data centers[C]//Computer Architecture (ISCA), 2012 39th Annual 

International Symposium on. IEEE, 2012: 488-499.
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What does training do?

˃ Stochastic Gradient Descent (or other variants)
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Inference

y=W·x

Calculate the error 
of output

δy

Update

δW=δy·x’

W=W+λ·δW

Back-propagate

δx=δy·W’

• Similar to inference, the main workload of training is still sum of product

• Maybe we can do the same things as for inference
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What we have done with inference
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Core API

Driver

Runtime

Loader

Profiler

DPU Platform

DL Framework

Compression

Pruning Quantization

Compilation

Compiler Assembler

ASIC

Software-Hardware
Co-design
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Techniques for inference: Software-Hardware Co-design

˃ Quantization
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fp-32 16-bit 8-bit 6-bit

Negligible accuracy loss with 
8-bit fixed-point weight & activation1 Save FPGA resources

1 Guo K, Han S, Yao S, et al. Software-Hardware Codesign for Efficient Neural Network Acceleration[J]. IEEE Micro, 2017, 37(2): 18-25.
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Techniques for inference: Software-Hardware Co-design

˃ Sparsification1
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Negligible WER increase with
10% weights

6x acceleration with
customized hardware

1 Han S, Kang J, Mao H, et al. Ese: Efficient speech recognition engine with sparse lstm on fpga[C]// ISFPGA, 2017: 75-84.
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Q: Can we take everything from 
inference to training?
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A: Things are different!
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Challenges

˃ Quantization for training is more difficult than for inference1
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Baseline：36.7/15.3

High accuracy v.s. Narrow bitwidth

1 Wu S, Li G, Chen F, et al. Training and Inference with Integers in Deep Neural Networks[J]. arXiv preprint arXiv:1802.04680, 2018.
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Challenges

˃ Pruning is applied when the network is well trained1
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Cannot be accelerated

utilizing sparsity

Can be accelerated

utilizing sparsity

Using sparsity only brings more 
workload to training

1 Han S, Pool J, Tran J, et al. Learning both weights and connections for efficient neural network[C]//NIPS. 2015: 1135-1143.

training pruning fine-tune

75hr 173hr

Training

Sparse

Network

training

75hr

Normal

Training
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Opportunity

˃ Previous hardware only utilizes operand sparsity

C=ΣAB (A and B can be sparse)

Apply to inference and back-propagate phases
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ESE1 SCNN2

1 Han S, Kang J, Mao H, et al. Ese: Efficient speech recognition engine with sparse lstm on fpga[C]// ISFPGA, 2017: 75-84.
2 Parashar A, Rhu M, Mukkara A, et al. Scnn: An accelerator for compressed-sparse convolutional neural networks[C]//ISCA, 2017: 27-40.

• We should also utilize result sparsity
• C=ΣAB (C is sparse)

• Apply to update phase: δW=δy·x’
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Our Solution

1. A training process with fixed-point gradient, activation, weight

32-bit float multiplication -> 8-bit fixed-point multiplication

8x energy saving

2. Pruning before the training process converge

Reduce floating point training process to 1/3

3. Customized FPGA accelerator design to accelerate the training of the sparse 

model.

Potentially more than 3x speed up for the largest layers
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• Data pre-
processing 

• Floating-
point training

CPU/GPU

• Pruning
• Encode 

sparsity
• Quantization

CPU

• Train the 
pruned 
network

FPGA
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Training with fixed-point data
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˃ Replace all the floating point data with 

fixed-point data

˃ Short bit-width for MAC: reduce 

computation cost

˃ Long bit-width for weight storage: able 

to accumulate small gradients
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Pruning before convergence

˃ 2D-kernel-wise pruning for CONV layers

˃ Normal pruning for FC layers

˃ For the simplicity of hardware and sparse coding style
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input

neuron 0
input

neuron M

input

channel 0
input

channel M

output

neuron 0

output

neuron N

output

channel 0

output

channel N

M×N fully connected layer
M×N channel convolution 

layer with 3×3 kernels
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Pruning before convergence

˃ Dataset: CIFAR-10; Network: VGG-11

˃ Prune standard: <1% accuracy loss
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Pruning and Quantization

˃ Dataset: CIFAR-10; Network: VGG-11

˃ Weight: 32/24/16 bit; Activation: 8 bit

˃ 24bit weight and pruning as early as 60 epochs is enough for a good training result
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Hardware design
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Pre Stream Post Stream

PE 1

PE 2

PE N

DRAM

c
o
n
tr

o
lle

r

interconnect

PE
d
a
ta

 b
u
f

w
e
ig

h
t B

u
f

AGU

in
te

r-
P

E

c
o
n
n
e
c
ti
o
n

Pre Stream

res buf

MAC array

Post Stream

Y buf

X buf

CONV/FC cnt

CONV/FC cnt

M
U

X

P
re

 S
tr

e
a
m

C
o
n
tr

o
lle

r

……

FP: ReLU/Pooling

BP: Sum

BP: ReLU/Pooling/

FP&BP: CONV/FC



© Copyright 2018 Xilinx

Parallelism

˃ Batch is welcomed for training

 Parallel batch process

˃ Input / Output channel

！ Affected by sparsity

 Duplicate input channel and parallelize output channel

˃ Feature map pixel / Convolution kernel

！ Loop size varies greatly

 Configurable parallelism
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Inference: 𝐹𝑗
𝑙 =  

𝑖=0

𝑀−1

conv2d 𝐹𝑖
𝑙−1, 𝐾𝑖𝑗 + 𝑏𝑗 𝑗 = 0, 1, … , 𝑁 − 1

Update: 𝑑𝐾𝑖𝑗 = conv2d 𝐹𝑖
𝑙−1, 𝑑𝐹𝑗

𝑙 𝑗 = 0,… , 𝑁 − 1
𝑖 = 0,… ,𝑀 − 1

large

small
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Configurable parallelism

˃ Each PE locally do multiply and accumulate

˃ Inference: 4 PEs process 4 output pixels for 2D convolution in parallel

Data is shared within a group of PE to utilize the data locality
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* =
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Configurable parallelism
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• Each PE locally do multiply and accumulate

• Inference: 4 PEs process 4 output pixels for 2D convolution in parallel
• Data is shared within a group of PE to utilize the data locality

• Update: same with inference
• Waste the computation units!

×
×

 

 * =
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Configurable parallelism

˃ Each PE locally do multiply and accumulate

˃ Inference: 4 PEs process 4 output pixels for 2D convolution in parallel

Data is shared within a group of PE to utilize the data locality

˃ Update: 4PEs process a part of the gradient in parallel

Partial gradients are summed in a successive module
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* =
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PE structure to support result sparsity

˃ Random access buffer for both input and output data

˃ Switch and MUX for index and address generation unit
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Use Compressed Sparse Block (CSB) format

˃ FC layers: split the weight matrix into blocks and encode each element in a block with 

a 2D coordinate.

˃ CONV layers: we split the kernels into channel blocks and encode each 2d kernel in a 

block with a 2D coordinate.

˃ Transpose by switch both the 2D coordinate in hardware and the block order in 

software

28

row

block
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Scheduling
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Evaluation

˃ FPGA Platform: KCU1500 development board

˃ Hardware Parameter:

250MHz clock

32 PE, each with 32 MAC unit to process a batch of 32 images

2 DDR4-2400 external memory
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˃ Bounded by on-chip memory

˃ Accumulation buffer occupies most of the RAMs because:

Large bitwidth (32 compared with 8 for data and param)

Ping-pong strategy to cover data transfer time

Ultra-RAM may relief this problem
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Evaluation

˃ Performance breakdown (simulation)
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Computation Bounded

Memory Bounded
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Evaluation
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Platform
TCAD 18 FPGA 17 ESE FCNN FPT17 FPDeep Proposed GPU Titan X

XC7Z020 GX1150 KU060 Maxeler MPC-X ZU19EG VC709 KCU1500 GM200

Function Inference Inference Inference Inference Training Training Training Inference Training Training

Quantization fixed 8 fixed 8/16 fixed 12 float 32 float 32 float 32 fixed 16 fixed 8 fixed 8/24 float32

Sparsity No No Yes No No No No Yes Yes No

Performance 

(GOP/s)
84.3 645.25 2516 62.06 7.01 86.12

1022
897.5 641.1 1252

(Per FPGA)

Power (W) 3.5 21.2 41 N.A. 27.3 14.2 32 29 150

Energy Eff. 

(GOP/s/W)
24.1 30.43 61.4 N.A. 0.27 6.05 31.97 30.95 22.11 8.4

˃ Performance comparison with state-of-the-art CNN inference/training accelerators 

and GPU
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Future work

˃ More functions for training

BN layers, quantization for other optimizers

˃ Scaling up the design?

Reduce memory consumption by optimizing memory design

Lower down bandwidth requirement by optimizing scheduling

We also have HBM

˃ Improve energy efficiency?

More advanced training methods

˃ Evaluation with real training tasks

We never know if the method applies to a new application

33
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Adaptable.

Intelligent.


