

Efficiently Training CNN with FPGA

Presented By

Yu Wang Associate Professor, Dept. of E.E., Tsinghua University Co-founder of DeePhi Tech.

An Era of Deep Learning

Everything & Everywhere

Two Stages in Deep Learning: Training and Inference

Efficient inference has been highly focused on

A latest version can be found at: https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/ © Copyright 2018 Xilinx

What about training?

> Training is also heavy work!

Training a VGG model on ImageNet dataset:

¹ Kontorinis V, Zhang L E, Aksanli B, et al. Managing distributed ups energy for effective power capping in data centers[C]//Computer Architecture (ISCA), 2012 39th Annual Copyright 2018 Xilinx 6

What does training do?

> Stochastic Gradient Descent (or other variants)

- Similar to inference, the main workload of training is still sum of product
- Maybe we can do the same things as for inference

E XILINX.

What we have done with inference

Techniques for inference: Software-Hardware Co-design

> Quantization

DEVELOPER

Negligible accuracy loss with 8-bit fixed-point weight & activation¹

Save FPGA resources

		Xilinx	Logic	Xilinx DSP				
	mult	iplier	add	ler	multiply & add			
	LUT	FF	LUT	FF	LUT FF		DSP	
fp32	708	858	430	749	800	1284	2	
fp16	221	303	211	337	451	686	1	
fixed32	1112	1143	32	32	111	64	4	
fixed16	289	301	16	16	0	0	1	
fixed8	75	80	8	8	0	0	1	
fixed4	17	20	4	4	0	0	1	

¹Guo K, Han S, Yao S, et al. Software-Hardware Codesign for Efficient Neural Network Acceleration[J]. IEEE Micro, 2017, 37(2): 18-25.

Techniques for inference: Software-Hardware Co-design

> Sparsification¹

Negligible WER increase with 10% weights

6x acceleration with customized hardware

¹Han S, Kang J, Mao H, et al. Ese: Efficient speech recognition engine with sparse lstm on fpga[C]// ISFPGA, 2017: 75-84.

© Copyright 2018 Xilinx

EXILINX.

Q: Can we take everything from inference to training?

A: Things are different!

Challenges

DEVELOPER

Method	k_W	k_A	k_G	k_E	Opt	BN	MNIST	SVHN	CIFAR10	ImageNet
BC	1	32	32	32	Adam	\checkmark	1.29	2.30	9.90	-
BNN	1	1	32	32	Adam	\checkmark	0.96	2.53	10.15	-
BWN ¹	1	32	32	32	withM	\checkmark	-	-	-	43.2/20.6
XNOR	1	1	32	32	Adam	\checkmark	-	-	-	55.8/30.8
TWN	2	32	32	32	withM	\checkmark	0.65	-	7.44	34.7/13.8
TTQ	2	32	32	32	Adam	\checkmark	-	-	6.44	42.5/20.3
DoReFa ²	8	8	32	8	Adam	\checkmark	-	2.30	-	47.0/ -
TernGrad ³	32	32	2	32	Adam	\checkmark	-	-	14.36	42.4/19.5
WAGE	2	8	8	8	SGD	X	0.40	1.92	6.78	51.6/27.8

> Quantization for training is more difficult than for inference¹

Baseline : 36.7/15.3

High accuracy v.s. Narrow bitwidth

¹Wu S, Li G, Chen F, et al. Training and Inference with Integers in Deep Neural Networks[J]. arXiv preprint arXiv:1802.04680, 2018.

> Pruning is applied when the network is well trained¹

Opportunity

> Previous hardware only utilizes operand sparsity

- >> C=ΣAB (A and B can be sparse)
- >> Apply to inference and back-propagate phases

SCNN²

• We should also utilize result sparsity

ESE¹

- C=ΣAB (C is sparse)
- Apply to update phase: $\delta W = \delta y \cdot x'$

¹Han S, Kang J, Mao H, et al. Ese: Efficient speech recognition engine with sparse lstm on fpga[C]// ISFPGA, 2017: 75-84. ²Parashar A, Rhu M, Mukkara A, et al. Scnn: An accelerator for compressed-sparse convolutional neural networks[C]//ISCA, 2017: 27-40.

1. A training process with fixed-point gradient, activation, weight

- >> 32-bit float multiplication -> 8-bit fixed-point multiplication
- >> 8x energy saving

2. Pruning before the training process converge

- >> Reduce floating point training process to 1/3
- 3. Customized FPGA accelerator design to accelerate the training of the sparse model.
 - >> Potentially more than 3x speed up for the largest layers

Training with fixed-point data

- > Replace all the floating point data with fixed-point data
- > Short bit-width for MAC: reduce computation cost
- > Long bit-width for weight storage: able to accumulate small gradients

Pruning before convergence

- > 2D-kernel-wise pruning for CONV layers
- > Normal pruning for FC layers
- > For the simplicity of hardware and sparse coding style

layer with 3×3 kernels

Pruning before convergence

> Dataset: CIFAR-10; Network: VGG-11

> Prune standard: <1% accuracy loss</p>

Pruning and Quantization

- > Dataset: CIFAR-10; Network: VGG-11
- > Weight: 32/24/16 bit; Activation: 8 bit
- > 24bit weight and pruning as early as 60 epochs is enough for a good training result

Hardware design

Parallelism

> Batch is welcomed for training

✓ Parallel batch process

> Input / Output channel

- ! Affected by sparsity
- $\checkmark\,$ Duplicate input channel and parallelize output channel

> Feature map pixel / Convolution kernel

- ! Loop size varies greatly
- ✓ Configurable parallelism

Configurable parallelism

- > Each PE locally do multiply and accumulate
- > Inference: 4 PEs process 4 output pixels for 2D convolution in parallel
 - >> Data is shared within a group of PE to utilize the data locality

Configurable parallelism

- Each PE locally do multiply and accumulate
- Inference: 4 PEs process 4 output pixels for 2D convolution in parallel
 - Data is shared within a group of PE to utilize the data locality
- Update: same with inference
 - Waste the computation units!

Configurable parallelism

> Each PE locally do multiply and accumulate

> Inference: 4 PEs process 4 output pixels for 2D convolution in parallel

>> Data is shared within a group of PE to utilize the data locality

> Update: 4PEs process a part of the gradient in parallel

>> Partial gradients are summed in a successive module

PE structure to support result sparsity

- > Random access buffer for both input and output data
- > Switch and MUX for index and address generation unit

Use Compressed Sparse Block (CSB) format

- FC layers: split the weight matrix into blocks and encode each element in a block with a 2D coordinate.
- > CONV layers: we split the kernels into channel blocks and encode each 2d kernel in a block with a 2D coordinate.
- > Transpose by switch both the 2D coordinate in hardware and the block order in software

Evaluation

> FPGA Platform: KCU1500 development board

> Hardware Parameter:

- >> 250MHz clock
- >> 32 PE, each with 32 MAC unit to process a batch of 32 images
- >> 2 DDR4-2400 external memory

Resource	LUT	Reg		Block RAM	DSP
Available	663360	132672)	2160	5520
Utilization	199111	249122		1060	1030
Ratio	30%	19%		49%	19%

> Bounded by on-chip memory

> Accumulation buffer occupies most of the RAMs because:

- >> Large bitwidth (32 compared with 8 for data and param)
- >> Ping-pong strategy to cover data transfer time
- >> Ultra-RAM may relief this problem

Evaluation

Computation Bounded

Memory Bounded

> Performance breakdown (simulation)

			Feed Forw	vard (FF)		Neuron Gradient(NG)				Neuron Gradient(NG)				
layer	Comp. (GOP)	Time (us)	Perf. (GOP/s)	bound type	Utilize rate	Time (us)	Perf. (GOP/s)	bound type	Utilize rate	Time (us)	Perf. (GOP/s)	bound type	Utilize rate	
conv1	0.11	733	154.4	В	27%	-	-	-	-	4158	27.2	В	5%	
conv2	1.21	1487	812.2	С	95%	1487	812.5	С	95%	2804	430.8	В	50%	
conv3_1	1.21	1696	712.4	С	97%	1694	713.0	С	97%	2477	487.7	В	67%	
conv3_2	2.42	2877	839.7	С	98%	2876	840.1	С	98%	4398	549.3	В	64%	
conv4_1	1.21	1217	992.3	С	97%	1217	992.9	С	97%	2686	449.8	В	44%	
conv4_2	2.42	1457	1658.4	С	97%	1456	1659.2	С	97%	3933	614.2	В	36%	
conv5_1	0.60	366	1651.7	В	32%	358	1687.7	В	33%	915	659.8	В	13%	
conv5_2	0.60	365	1652.7	В	32%	358	1688.7	В	33%	915	660.0	В	13%	
dense6	0.02	329	51.0	В	1%	328	51.1	В	1%	717	23.4	В	0.5%	
dense7	0.02	329	51.0	В	1%	328	51.1	В	1%	717	23.4	В	0.5%	
dense8	0.003	75	4.4	В	0.1%	74	4.4	В	0.1%	272	1.2	В	0.02%	
total	9.81	10931	897.5	-	-	10988	892.8	-	-	23993	408.9	-	-	

> Performance comparison with state-of-the-art CNN inference/training accelerators and GPU

	TCAD 18 FPGA 17 ESE		FC	FCNN		FPDeep	Prop	oosed	GPU Titan X							
Plation	XC7Z020	GX1150	KU060	Maxeler MPC-X		ZU19EG	VC709	KCU1500		GM200						
Function	Inference	Inference	Inference	Inference	Training	Training	Training	Inference Training		Training						
Quantization	fixed 8	fixed 8/16	fixed 12	float 32	float 32	float 32	fixed 16	fixed 8	fixed 8/24	float32						
Sparsity	No	No	Yes	No	No	No	No	Yes Yes		No						
Performance	04.0	0.45.05	045.05	00.00	7.04	00.40	1022	007.5	0.44.4	4050						
(GOP/s)	84.3	84.3	84.3	84.3	84.3	04.3	645.25	2516	62.06	7.01	86.12	(Per FPGA)	897.5	641.1	1252	
Power (W)	3.5	21.2	41	N.A.	27.3	14.2	32	29		150						
Energy Eff. (GOP/s/W)	24.1	30.43	61.4	N.A.	0.27	6.05	31.97	30.95 22.11		8.4						

Future work

> More functions for training

>> BN layers, quantization for other optimizers

> Scaling up the design?

- >> Reduce memory consumption by optimizing memory design
- >> Lower down bandwidth requirement by optimizing scheduling
- >> We also have HBM

> Improve energy efficiency?

>> More advanced training methods

> Evaluation with real training tasks

>> We never know if the method applies to a new application

Adaptable. Intelligent.

