

Presented By

Glenn Steiner: System Software & SoC Solutions – Product and Technical Marketing David Brubaker: Product Line Manager – Zynq UltraScale+ RFSoC

RFSoC Introduction

The First Programmable RFSoC

Integrated RF-Class Analog Converters and Error Correction Technology

Delivering 50-75% Power & Footprint Reduction

Full Programmability Across the RF Signal Chain

Part of a Complete System Based on Production-**Proven MPSoCs**

ARM

Monolithically Integrated

Processing System

• Quad-Core A53 (64-bit)

E XILINX.

Xilinx RF Converters – An Evolution and A Revolution

XILINX.

RFSoC Applications

Software Defined Radio on a Chip

XILINX DEVELOPER FORUM

>> 7

© Copyright 2018 Xilinx

E XILINX.

Enabling 5G Architectures

Zynq UltraScale+ RFSoC in 5G New Radio

E XILINX.

Zynq UltraScale+ RFSoC in Wireless Backhaul

XILINX.

DOCSIS 3.1 Remote PHY Node

- "Fiber Deep" deployed closer to the home for greater bandwidth & power efficiency
- Remote PHY node moves PHY layer processing closer to the home, increasing network capacity

DOCSIS 3.1 Remote PHY Node

E XILINX.

RFSoC Product Family and Benefits

RFSoC Family Overview

Data Converter Enabled Devices

			1			1			
		Baseband	Wireless Radio		Backhaul, Remote-PHY	Phased Array Radar / Radio			
RF Data Converters Soft Decision FEC		ZU21DR	ZU25DR	ZU27DR	ZU28DR	ZU29DR			
	12-bit, 4GSPS ADC	-	8	8	8	-			
	12-bit, 2GSPS ADC	-	-	-	-	16			
	14-bit, 6.4GSPS DAC	-	8	8	8	16			
	SD-FEC	8	-	_	8	-			
Processing System & Programmable Logic	Application Processor Core	Quad-core ARM Cortex-A53 MPCore up to 1.5GHz							
	Real-Time Processor Core	Dual-core ARM Cortex-R5 MPCore up to 533MHz							
	High Speed Connectivity	DDR4-2600, PCIe Gen3 x16, PCIe Gen4, 100G Ethernet							
	Logic Density (System Logic Cells)	930K	678K	930K	930K	930K			
	DSP Slices	4,272	3,145	4,272	4,272	4,272			
	33G Transceivers	16	8	16	16	16			

>> 15

Key Benefits of Integrated RF Data Converters

• Elimination of power hungry FPGA-to-Analog interfaces like JESD204

- Eliminates discrete converters and associated JESD PCB area
- Enables increasing channel counts across a range of new radio applications

Shorter Design Cycle

- Simplified HW design with fewer RF components and the elimination of JESD Interfaces
- Simpler Data Converter Subsystem configuration from within Xilinx Vivado tools

Programmable Direct RF Sampling For Radio

> Moving RF Signal Processing into the Digital Domain

>> Flexible Platform based on Programmable HW and SW addresses a range of radio applications

> Remove less flexible RF signal processing components

>> Analog/RF components have limited flexibility and performance

> Enable a programmable platform that can be used across radio types

- Multiple radio variants required to address global frequency allocations and different bandwidths
- >> Ability to support new and emerging standards such as Carrier Aggregation

Baseband/IF Sampling & RF Signal Processing

>> 18 XDF ^{XILINX} FORUM

© Copyright 2018 Xilinx

E XILINX.

Direct RF Sampling & Digital Signal Processing

RFSoC delivering Huge SWaP-C Advantages

4x4 Transmit / Receive Channels Building Blocks for Phased Array Radar

16x16 Transmit / Receive Channels Building Blocks for Phased Array Radar

Most EW Modules Based on FPGAs or All Programmable SoCs

- Algorithms must be updated as threats change
- RF devices the "only ASIC left" on the board

Government Programs Need to Scale SWaP-C

- 1000s of modules in a system, 100s of systems in a program
- Systems need modularity and full re-programmability

Advantages of an Integrated SD-FEC

- High performance core with robust LPDC and Turbo engines
- Configurable interface to control throughput per design requirements

Flexible Customization and Design Integration

- Dynamically optimize parameters and codes for evolving standards
- Coupled with an HW & SW platform

Reduced System Power

- Hardened 16nm FinFET silicon vs. soft implementation in FPGA fabric
- Meets thermal requirements for key applications

Dramatic Power Reduction vs. Soft Core Example of 2x LDPC Cores at 2Gb/s Throughput

- 307MHz F_{MAX}
- 150k LUTs
- 258 BRAM Kbits for storage & buffering

- 614MHz F_{MAX}
- No additional resources required
- More flexibility & functionality available vs. soft core

Zynq® UltraScale+™ RFSoC RF ADC & RF DAC Overview

RF ADC Block 2GS/s Configuration (ZU29DR Only)

RF ADC Block 4GS/s Configuration (ZU25DR, ZU27DR, & ZU28DR Only)

RF DAC Block Diagram (ZU25DR, ZU27DR, ZU28DR, & ZU29DR)

E XILINX.

RFSoC Product Solutions

Zynq UltraScale+ RFSoC Kits

> Zynq UltraScale+ RFSoC ZCU111 Evaluation Kit

- >> XCZU28DR-2FFVG1517E RFSoC
 - 8x 4GSPS 12-bit ADCs
 - 8x 6.5GSPS 14-bit DAC
 - 8 soft-decision forward error correction (SD-FECs)

- >> FMC+ :12 x 32.75 Gb/s GTY transceivers and 34 user defined differential I/O signals
- >> XM500 RFMC balun transformer card w 4 DACs/ 4 ADCs to baluns 4 DACs/ 4 ADCs to SMAs
- >> Price: \$8,995
- >> Part Number: EK-U1-ZCU111-G

> Zynq UltraScale+ RFSoC ZCU1275 Characterization Kit

- >> XCZU29DR RFSoC
 - 16x 2GSPS 12-bit ADCs
 - 16x 6.5GSPS 14-bit DAC
- >> Balun Board, Bullseye Cables, Filters
- >> Price: \$14,995
- >> Part Number: CK-U1-ZCU1275-G

RF DC Evaluation Tool Highlights (ZCU111)

> LabVIEW based evaluation GUI running on PC

Ethernet Interface to board

> Loopback (DAC to ADC) for multiple channels evaluation

- Key parameters measurement (i.e. NSD, SFDR, THD, Harmonics, Spurious Performance)
- 2 tones test (i.e. IM3)

> DAC / ADC standalone evaluation

- DAC analysis => generate test vectors
- ADC analysis => FFT spectrum analysis for various input test signals with signal generator

> Advance Features

- Nyquist zone, DDC/DUC, Mixer, NCO, Looping feature
- File input / export for customized test vectors / modulation

EXILINX

RF Analyzer Debug Tool Highlights

> Act as a debug tool

- Support the RFSoC configuration
- Cross-check features and functionalities
- Ease of use no FPGA experience required
- Not require any additional external resources (i.e. DDR)

> Compatible with any platforms

RFSoC performance can be evaluated in any customers' boards

> JTAG based communication interface

- JTAG USB cables connected between debug tool & customers' platforms
- All communications via JTAG:
 - CTRL: JTAG-to-UART
 - DATA: JTAG-to-AXI

> Features

Simplified version of RF DC Evaluation Tool

ZCU111 Power Measurement & Power Advantage Tool

> Tool Measures & Displays All Rails, SysMon Voltages & Temperature

78.0

103.5

105.5

427.5

50.0

- >> Including RFSoC Converter Power
- > Text, Plots, & Data Logging Included
- > Currently supported on ZCU102, ZCU106 and NOW ZCU111
- > Works with Customer Designs Without Impact

DAC AVIT

ADC AVCC

DAC AVCC

DAC A/CCAUX

ADC AVCCAUX

>> Less temperature unless R5 code included

1.248

1.796

0.927

1.817

0.926

> Separate GUI Enables More to Be Seen

Documentation

> PG269 – RF-ADC/DAC Product Guide

- >> driver/API Appendix C
- >> HTML driver docs in XSDK build (system.mss file Documentation link, GitHub)
- >> Xilinx linux/baremetal wikis

> PG256 – SD-FEC Product Guide

- >> bare-metal driver/API Appendix C
- >> Linux driver/API from source files via Doxygen
- > HTML driver docs in XSDK build (system.mss file Documentation link, GitHub)
- >> Xilinx linux wiki

Also very helpful to new ZU+ users:

- >> UG1209 ZU+ MPSoC Embedded Design Tutorial
- >> UG1228 ZU+ Embedded Design Methodology Guide
- >> UG1087 ZU+ MPSoC Register Reference Guide

Sd_fec_v1_0									
verview	Data Structures 🕶								
fec_v1_t ization a Structure nple Data Stru		XILIPROGRAMMABLET# rfdc_v3_2 XIlinx SDK Drivers API Documentation							
	Overview Data Structures - A	Pls 🔻	File List	Examp	iples				
	 ✓ ride_v3_2 → Data Structures → APIs → File List Steps to create BSP, FSBL application and Te → Examples 	The is designed and the second	rfdc_v3_2 Documentation The Xilinx♦ LogiCORE IP Zynq UltraScale+ RFSoC RF Data Converter IP core provides a c designs. Multiple tiles are available on each RFSoC and each tile can have a number of data sample input frequencies up to 4 GHz at 4 GSPS with excellent noise spectral density. The F excellent noise spectral density at an update rate of 6.4 GSPS. The RF data converters also that include programmable interpolation and decimation, NCO and complex mixer. The DDC for DAC and ADC operations each. Each tile can have a maximum of 4 blocks/slices. This di read back configurations. Some of the features that the driver supports are: 1) Setting up ann Reading back interpolation or decimation factors 4) Setting up and reading back QMC setting Setting up and reading back coarse delay settings All the APIs implemented in the driver pro dump all registers for a requested tile. Inline functions have also been provided to read back There are plans to add more features, e.g. Support for multi band, PLL configurations etc. MODIFICATION HISTORY: Ver Who Date Changes						
		1.0 2.0	sk (sk (25/16/17 28/09/17 28/16/17 28/18/17 28/23/17 28/23/17	Initial release Fixed coarse Mixer configuration settings CR# 977266, 977872. Return error for Slice Event on 4G ADC Block. Corrected Interrupt Macro names and values. Add support for SYSREF and PL event sources. Add API to enable and disable FIFO. Add API to configure Nyquist zone. Add additional info to BlockStatus.				

E XILINX

Zynq® UltraScale+™ RFSoC Hardware & Software Design Flow

RFSoC Design Flow Overview

Super Sample Rate Support & IP

> Super Sample Rate – Processing multiple samples per clock

- >> Data into FPGA @ much higher sample rate than the FPGA clock
 - Sample rate into FPGA greater than PL clock rate
- >> Need to parallelize the input and process multiple samples per FPGA clock cycle
- >> Requested by A&D customers where RF-ADC/DACs do not meet there DUC/DDCs needs

> SysGen has developed an SSR programmatical library of 26 SSR IP blocks

- >> Including FIR, Complex Mult, Mult, DDS and others (2018.3)
- >> SysGen provides additional Super Rate Support

RF-ADC/DAC Implementation Steps

Add an RF-ADC/DAC instance using IPI

• Single instance

2. Use GUI to configure and customize the IP

- Right click IP to generate example design and testbench, plus DAC HW stimulus generator and ADC HW sink
- Use BSPs for HW examples per board
- **3.** Connect the RF-ADC/DAC instance to the PS, additional logic, RTL, outside world...
- 4. Implement (Synthesis, PnR...)
- 5. Generate the bitstream, export the HDF
- 6. Implement your Software Project
 - XSDK, Petalinux, 3rd party...

VIVADO

ШО

38

E XILINX.

SD-FEC Implementation Steps

1. Add SD-FEC instance using IPI

- SD-FEC requires a license but it's free xilinx.com/products/intellectual-property/sd-fec.html
- Place SD-FEC IP instances (see PG256 for placement constraints)

2. Use GUI to configure and customize the IP

- Includes Optional Example Designs

 Testbench simulation
 Design and events the design
 - 2) PS-based example design
- **3.** Connect SD-FEC instances to the PS, additional logic IP, RTL, outside world...
- 4. Implement (Synthesis, PnR...)
- 5. Generate the bitstream, export the HDF
- 6. Implement your Software Project
 - XSDK, Petalinux, 3rd party...

VIVADO

DE

39

Drivers & Software

Zynq UltraScale+ RFSoC Device

- > The Processing System is identical to a ZU+ MPSoC, except:
 - >> No GPU,
 - >> Quad Cortex-A53 APU only (no dual)
 - >> All other PS blocks remain the same
- > A portion of the PL of a ZU+ MPSoC device has been replaced with the SD-FEC, RF-ADC/DAC blocks
- > No change to peripheral interfaces or drivers (I2C, QSPI...)

• Software users coming from a ZU+ design already know how to use the RFSoC PS

RFSoC Drivers

- >> Bare-Metal XSDK build, GitHub, Linux GitHub (embeddedsw)
- >> Linux and bare-metal APIs are identical
- >> Control plane manipulation, avoiding registers
- >> 77 APIs total (as of 2018.1)

> SD-FEC – sd_fec_v* (1.0) (PG256 – Appendix C)

- Bare-Metal In the XSDK build, GitHub Linux – GitHub (linux-xlnx) – linked from Xilinx linux drivers wiki
- >> Linux and bare-metal APIs differ
- >> Control plane manipulation, data table updates, register manipulation option via API
- >> 7 main bare-metal APIs, plus 84 specialized register/table API calls (as of 2018.1)
- > Three of the four driver combinations use libmetal library

.../Xilinx/embeddedsw/XilinxProcessorIPLib/drivers

A Simple RF-ADC/DAC Example Explained

- > Set the RF-ADC/DAC instance
- > Populate the data structures per the initial Vivado settings
- > Two nested loops checking which blocks are enabled
 - >> The first runs through each Tile
 - The second runs through each Block within each Tile
- > Modify Mixer Settings from initial configuration
- > Write new Mixer Settings
- > Modify QMC Settings from initial configuration
- > Write new QMC Settings

>> 43

Software changes can have drastic effects on the hardware (example: setting the wrong data rate will generate a FIFO overflow)

A Simplified Linux RFSoC Boot Example

- >> The PMU/CSU initialize as in a ZU+
- >> The FSBL (First Stage Boot Loader) loads the bitstream including the SD-FEC and/or RF-ADC/DAC blocks
- In parallel the PMU/CSU/APU/RPU finish initialization and the SD-FEC and/or RF-ADC/DAC blocks initialize via on-board state machines (*no user interaction*)
- >> Software access to the IP is optionally started through *_Lookup then *_CfgInitialize API commands
- >> Application code can then optionally interact with the SD-FECs or RF-ADC/DAC as needed through APIs
 - The SD-FECs and/or RF-ADC/DAC initialize and can operate without software interaction

See The RF Evaluation Tool Demonstration During The Break

RF Data Converter Evaluation Tool - Overview

>> 46 XDF XILINX DEVELOPER FORUM

© Copyright 2018 Xilinx

E XILINX.

Beta RF DC Evaluation Tool Measurement simple set-up

- Integrated RF Data Converter Subsystem addresses a wide range of applications
- > Significantly reduces the Power and Footprint of high channel count systems
- > Enables adaptable Radio HW platforms
- > Full support in Vivado accelerates development time versus discrete solutions
- > Data Converter Evaluation Board, Design, and Evaluation Tools

Adaptable. Intelligent.

Presented By

Glenn Steiner David Brubaker Xilinx

