
© Copyright 2018 Xilinx

Presented By

Balachander Krishnamurthy

Sr. Product Marketing Manager

October 2nd, 2018

Vivado Synthesis Tips & Tricks

© Copyright 2018 Xilinx

Topics for Today

˃ The UltraFast Design Methodology Philosophy

˃ UFDM: Customer Case Study

˃ Waiver Mechanism

˃ Vivado Incremental Synthesis

˃ QoR: Tips & Tricks

2

© Copyright 2018 Xilinx

UltraFast Design Methodology
Philosophy

3

© Copyright 2018 Xilinx

UltraFast Design Methodology Philosophy

Impact of changes

on design quality
Effort required to

fix problems

Design/IP

Creation

Board/Device

Planning

RTL Coding

& Synthesis

Place &

Route
ECO Lab Bring-Up

& Debug

Design

Cycle

Later iterations:

Longer, difficult and less effective

Earlier iterations:

Faster and more effective

Validate design at each stage, fix issues before proceeding to next stage

4

© Copyright 2018 Xilinx

Report Run Strategies

˃ Create custom report strategies similar to custom

run strategies

˃ Improve compile time

Select which reports are generated for each run

Configure options for each report individually

˃ Reuse report strategies across runs and projects

5

© Copyright 2018 Xilinx

UG1292: UFDM Timing Closure Quick Reference Card

˃ Step-by-step Analysis and

Suggestions

˃ Address common timing

closure challenges

HLx and SDx

Project and Non-project

6

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1292-ultrafast-timing-closure-quick-reference.pdf

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1292-ultrafast-timing-closure-quick-reference.pdf

© Copyright 2018 Xilinx

UFDM: Customer Case Study

7

© Copyright 2018 Xilinx

Customer Case Study: Design not functional

˃ Major Xilinx customer with tight production deadline

˃ Customer claimed
Running ‘place_design -fanout_opt’ caused functional issue

Adding ILA to DCP, design issue is gone

Not a CDC issue

˃ OneSpin equivalency checking is clean
opt_design DCP compared with place_design DCP

˃ SR filed and escalated to factory

8

© Copyright 2018 Xilinx

˃ Many UltraFast Methodology Violations

Timing -1  Incorrect clock waveform

Timing-3  Breaking clock propagation delay and
potentially skew accuracy

Timing-6, 27  Primary clock defined on hierarchical pin

Timing-36  Inaccurate skew due to missing insertion
delay on a generated clock

Customer Case Study: Analysis by factory

9

© Copyright 2018 Xilinx

˃ Report CDC flagged ~10K Critical violations!

Waivers can help focus on new or un-reviewed issues

˃ CDC-11 violations introduced by placer
fanout opt

User allowed replication of CDC endpoint (RAMB/WE
control signal)

=> RAMBs written in different cycles

Safe CDC topology would have prevented replication

˃ Outcome
Design working after addressing methodology and
CDC violations

Customer Case Study: Analysis by factory …2

WE

10

© Copyright 2018 Xilinx

Waiver Mechanism

11

© Copyright 2018 Xilinx

Waiver Mechanism

˃ Hide violations in CDC/DRC/Methodology checks in the design
Focus only on what is relevant

˃ Waivers can be created, queried, reported against and deleted
Track user, timestamp and description

Waivers should be reviewed by the design team

XDC Compatible, allows read/write and scoping

Duplicate waivers ignored

˃ Recommend
Don’t waive Critical violations

Waive Warning (after reviewing them) and Info types

˃ Xilinx IPs have adopted waiver mechanism

˃ Documentation
UG906: Design Analysis and Closure Techniques

UG938: Tutorial Design Analysis and Timing Closure (NEW)

12

© Copyright 2018 Xilinx

Creating a Waiver

˃ Create from: Report CDC / DRC / Methodology result window

˃ Create from: CDC / DRC / Methodology violation objects

˃ Create from: manual specification of all arguments
Arguments are order dependent. They must match order inside the violation object

report_cdc -name cdc_1
foreach vio [get_cdc_violations -name cdc_1 -filter {CHECK == CDC-1}] {

if {[regexp {^top/sync_1} [get_property STARTPOINT_PIN $vio]]} {
create_waiver -of $vio -description {Safe by protocol}

}
}

Notice: only description

argument specified with

this method.

13

© Copyright 2018 Xilinx

Reporting Waivers

˃ In Report CDC / DRC / Methodology GUI (and command

line)

Report can be generated with the waivers

Report can be generated by ignoring the waivers

Can report only waived violations

˃ report_waivers

Only Text Based

GUI Support coming soon

Report CDC/DRC/Methodology must be run prior to extract
statistics

Useful Waiver Commands
create_waiver

get_waivers

delete_waivers

write_waivers

report_waivers

14

© Copyright 2018 Xilinx

Vivado Incremental
Synthesis

15

© Copyright 2018 Xilinx

Incremental Synthesis

˃ Flow similar to incremental P & R

˃ Benefits:
40% synthesis runtime reduction

‒ Change is localized

Iterate quickly while working on a module

More design iterations in the front end

Improved predictability in results

Fewer changes in netlist structure when
compared to previous flow

Improved results/QoR/runtime when used
with Incremental P & R

Revised RTL

Synthesis

Reference

Checkpoint

RTL Change
Reference RTL

synth_design read_checkpoint

–incremental

synth.incr.dcp

write_checkpoint

–incremental_synth

synth.incr.dcp

Reference Run Incremental Run

synth_design

16

© Copyright 2018 Xilinx

Top Module (M)

M1

Incremental Synthesis - Internal Flow

˃ G’1 must be re-synthesized

˃ G2, G3, G4 re-used

Reference Run Incremental Run

G1M3

G2

M4

Top Module (M’)

M1

G1M3

G2
G3

G4

M4

G3

G4

G3

G4

G2

G1

G2
G3

G4 G1

G2
G3

G4 G1

G2
G3

G4 G1

Mc

G’1

17

© Copyright 2018 Xilinx

Top Module (M)

M1

Incr. Synthesis - Cross-Boundary Optimizations

˃ More cross boundary optimizations leads to more re-synthesis (G’1  G’2)

˃ Changed / dissolved partitions also need to be re-synthesized

Reference Run

➢ Track cross-boundary optimizations

Incremental Run

➢ Re-synthesize changed modules + its dependencies

G1M3

G2

M4

Top Module (M’)

M1

M3

G3

G4

M4

G3

G4

G2

G3

G4

G2

G1

G2
G3

G1
G4

Mc

G’1

G’2

18

© Copyright 2018 Xilinx

Log file and Non-Project Mode Flow
˃ Reference run

run.tcl

‒ synth_design

‒ write_checkpoint –incremental_synth –
force postSynth.dcp

‒ opt_design

‒ place_design

‒ Phys-opt_design optimizations1

‒ route_design

‒ write_checkpoint routed.dcp

‒ Phys-opt_designoptimizations2

‒ write_checkpoint ref_run_post-
route_physopt.dcp

˃ Incremental run
run.tcl

‒ read_checkpoint –incremental
../ReferenceRunDir/postSynth.dcp

‒ synth_design

‒ write_checkpoint –incremental_synth –
force postSynth_incr.dcp

‒ opt_design

‒ read_checkpoint –incremental
../ReferenceRunDir/ref_run_post-
route_physopt.dcp optimizations1 +
optimizations2

‒ place_design

‒ route_design

‒ write_checkpoint routed_incr.dcp

19

Report has 4 sections

1. Incremental synthesis was run or Not

2. Changed Modules and %Resynthesis

3. Check point details

4. RTL partitions (Reuse and Resynthesis)

© Copyright 2018 Xilinx

QoR: Tips & Tricks

20

© Copyright 2018 Xilinx

Tips and Tricks: ROM Optimization

Missing uniformity in ROM data => 64th location

• 64-deep ROM, 4-bit wide accessing different locations

• Loop with 30 iterations

• 10 ROM structures per iteration (300 ROMs in total)

• Data in 0-15 repeated in 16-31. 32-47 and 48-62

• Could this be 16 deep instead of 64 deep?

21

© Copyright 2018 Xilinx

Tips and Tricks: ROM Optimization

Check the condition to access the data for address#63

This way, the ROM now can become 16-deep and 4-bit wide

4-bit address as the two MSB bits

doesn’t play any role

22

© Copyright 2018 Xilinx

Tips and Tricks: ROM Optimization

LUT difference = Original – Proposed (3087 - 1826) = 1261

23

© Copyright 2018 Xilinx

Tips and Tricks: 500 MHz Wide Multiplier

• Tip: Review log file

• 36 DSP’s for 100x100 multiplier

• Not meeting timing, needs pipeline registers

• 8 pipeline registers needed for timing closure

24

© Copyright 2018 Xilinx

Tips and Tricks: Multiplier => LUT mapping

˃ Higher utilization v/s competition for multipliers

˃ Need to compare LUT based mapping

Map to DSP (use_dsp48 = “no”)

Convert to LUT based (-max_dsp 0)

With use_dsp48 = “no” attribute

With –max_dsp 0

25

© Copyright 2018 Xilinx

Summary

˃ Following the UltraFast Design Methodology reduces Time-to-Market

˃ Waiver Mechanism for CDC, Methodology and DRCs enables clean

reports and design sign-off

˃ Ensure Clock Domain Crossing issues are reviewed and fixed
Use the waiver mechanism to focus on real issues

˃ Vivado Incremental synthesis reduces compile time

Reach out to your FAE for details/issues

26

© Copyright 2018 Xilinx

