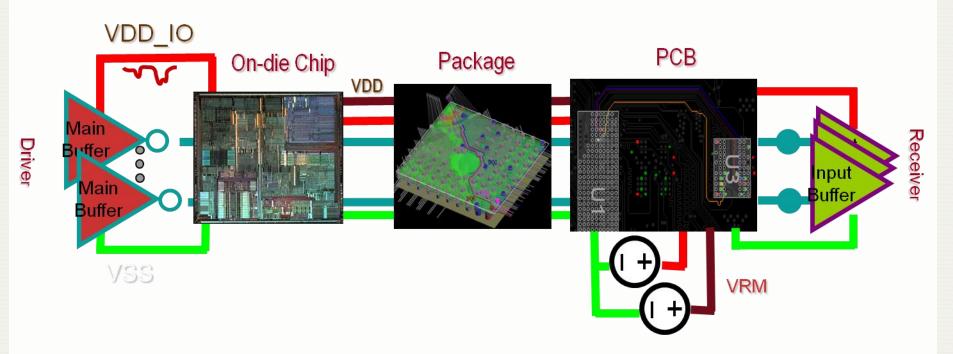
DESIGNCON[®] 2014

Model Extraction and Circuit Simulation Approaches For Successful SSO Analysis

Brad Brim and Mike Kang, Cadence Design Systems Chris Wyland and Romi Mayder, Xilinx, Inc

cādence[®] January 28-31, 2014 | Santa Clara Convention Center | Santa Clara, CA


Simultaneous Switching Output

- For large parallel buses SSO can become a significant effect
 - root cause is often the PDN rather than proximity coupling amongst signals
 - PDN noise <u>is</u> signal noise
 - even if PDN noise is small, PDN-enhanced coupling amongst vias causes high signal coupling
 - even in the absence of noise levels high enough to cause unintended switching, timing/jitter is affected

System-level Modeling

 Must decide and verify how much of the system must be modeled from the accuracy of results desired

Bandwidth Considerations

- High frequency bandwidth
 - Tr = 100 pS
 - -0.35/Tr = 3.5GHz
 - $-F_max = 6GHz$
- Low frequency domain
 - R(freq) should be small
 - T_max = maximum metal thickness = 37um
 - frequency below when T_max is one skin depth (500MHz)

DESIGNCON[®] 2014

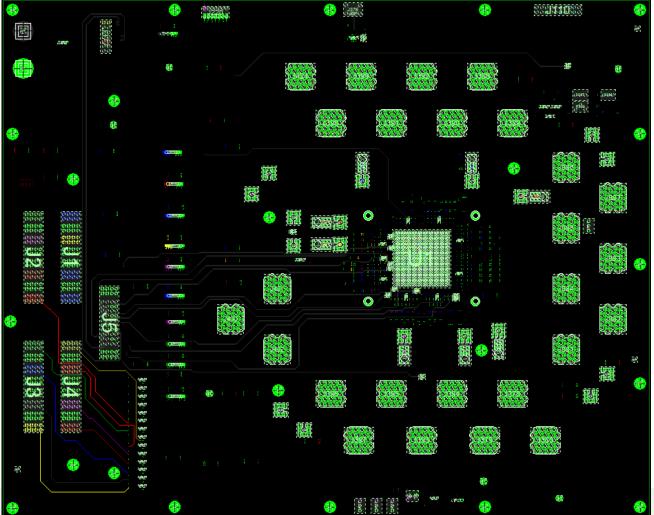
• F_low = 100kHz

Extraction Issues

- Accuracy
 - general numerical noise
 - e.g. passivity
- Causality
 - e.g. material properties
- Numerical stability unique to **low frequencies**
 - AC solvers are generally illconditioned as $1/\omega^2$
- Consistency of AC results with DC results
- "DC extrapolation"

Circuit Simulation Issues

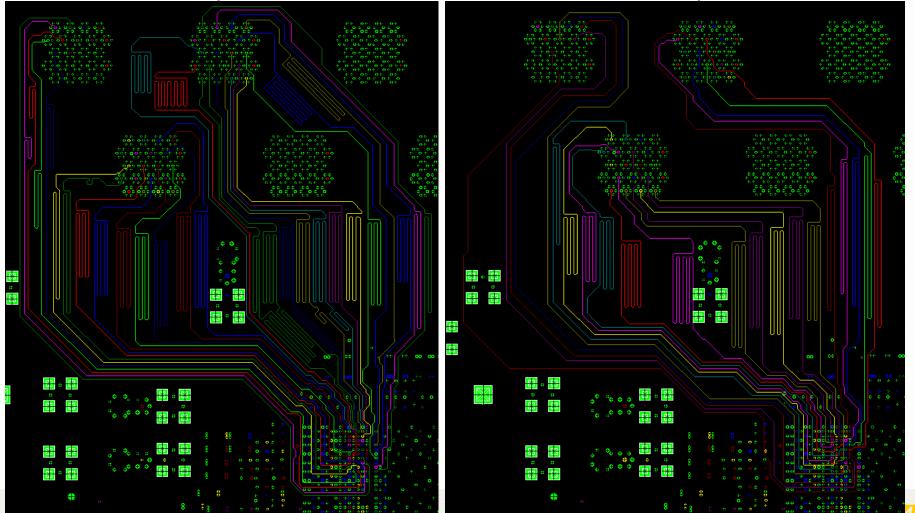
- Data formats supported
 - Touchstone, BNP
- Buffer element support
 - transistor level models
 - Power-aware IBIS models
- Frequency domain data elements available
 - controlled sources
 - direct usage
 - rational function fit (internal or external)
- Simulation control parameters


How to Assure Success ?

- One person is responsible for the netlist
- Many people contribute models
 - different expertise and language
 - different departments (companies)
 - different extraction tools
- Is there a way to assure success for SSO analysis?
 - too many heuristics
 - too many inconsistent failures
 - a cookbook flow or best-known-method is needed

A Test Case

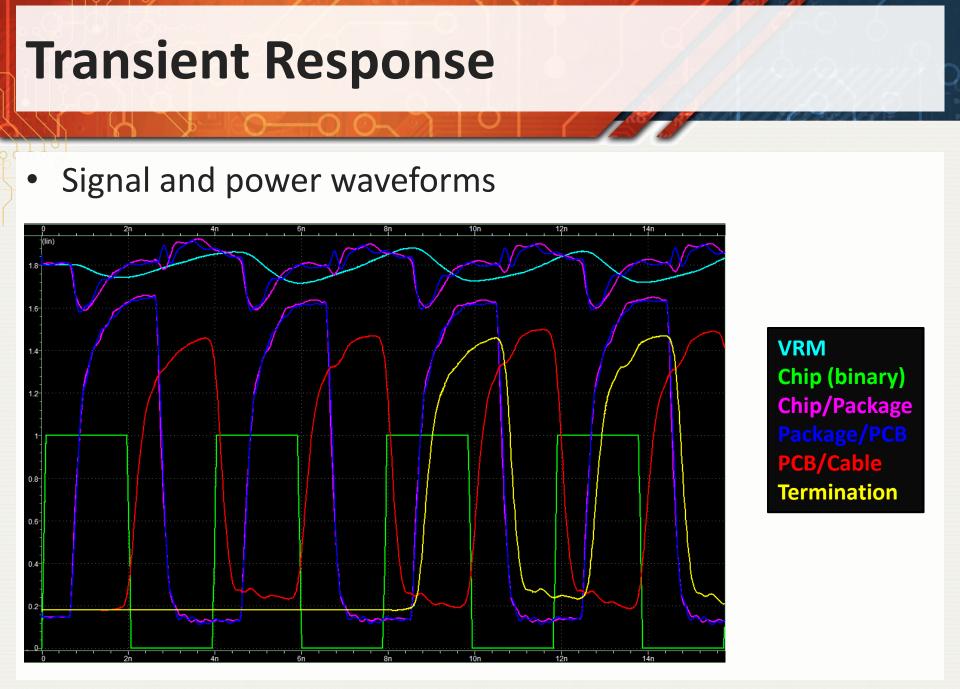
Xilinx verification board



DesignCon[®] 2014

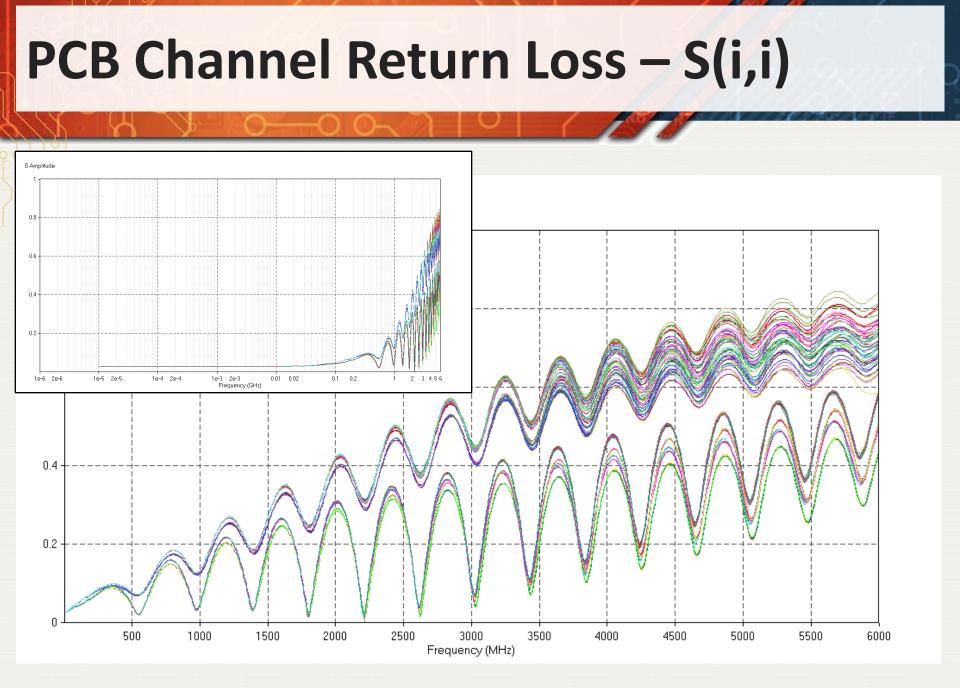
Routing

Layer 3



DESIGNOUN 20

The System-level Model


- Power-aware IBIS drivers
- Simple RC on-die PDN model
- Known-good FD model for package
- Variable PCB model
- Simple cable and termination models
- Relevant package and PCB decaps
- 50 single-ended channels
- All other signal nets excluded from extraction
- All power domains included in extraction

PCB Channel Insertion Loss – S(i+1,i)

Envisioned Approach

- Investigate extraction options
 - discrete vs. continuous data
 - lowest frequency of extraction
 - explicit DC data
 - postprocessing of data
 - precision versus passivity-assured macromodel
- Investigate circuit simulation options
 - direct vs. rational function application of frequenecy domain data
 - simulator options

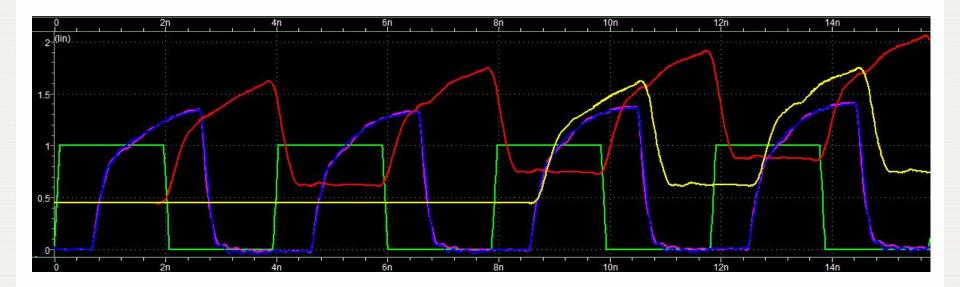
Extraction Options

Discrete data

- fix high frequency sampling: linear and log
- vary low frequency sampling: linear and log
- vary lowest extraction frequency: 1KHz 1MHz
- consider explicit DC data: separate DC extractor
- Continuous data
 - vary lowest extraction frequency
 - consider explicit DC data
- Processed data
 - generate rational function model
 - consider passivity/causality

Circuit Simulation Options

- Data formats supported
 - Selected Touchstone (discrete) and BNP (continuous)
- Buffer element support
 - Selected power-aware IBIS models
- Frequency domain data elements available
 - Tested direct usage and controlled sources
 - Focused on rational function fit (internal and external)
 - best general performance and success
- Simulation control parameters
 - Not explores in detail and not discussed here


Typical Failure Modes

- Rational function generation fails
 - hangs or takes forever
- Passivity/Causality fails to complete
 - iterative so it gets better
- Circuit simulation convergence issues
 - hangs or takes forever
 - illogical results
 - Ever-increasing DC offset

Typical Incorrect Waveform

When DC extrapolation fails an ever increasing DC offset is observed

Observations

Discrete data

- fix high frequency sampling
 - considered linear and log
 - not much affect unless too sparsely sampled at F_max

DESIGNLON

- vary low frequency sampling
 - considered linear and log
 - no observable systematic differences
 - indeterminate failures
- vary lowest extraction frequency
 - considered 1KHz to 1MHz
 - highest end had more frequency failures
 - indeterminate failures

Observations

Discrete data (continued)

- consider explicit DC data: separate DC extractor
 - issues when difference between DC and AC extrapolated is larger
 - issues more common when the difference is larger
 - helps to "adjust" AC data to correspond to DC value
 - success sensitive to adjustment algorithm
- Continuous data
 - vary lowest extraction frequency
 - generally more frequent success relative to discrete data
 - same indeterminate failures observed
 - consider explicit DC data
 - same observations as for discrete

Observations

Processed data

- generate rational function model
 - performed externally to circuit simulator
 - doesn't affect previous observations significantly
- consider passivity/causality preservation
 - performed after initial rational function generated
 - can be more time consuming that rational function generation
 - may require user interaction in some cases for successful passivity/causality preservation
 - seems to assure successful simulation
 - can results in a bit slower circuit simulation time relative to applying some of the other options ... the price of success

Discussion

- Selected 1kHz lowest extraction frequency
 - highly dependent on the extraction tool, verify numerical stability
- Selected rational function model in circuit simulator
 - fastest, most reliable yet controlled source model is a backup
- Failures are indeterminate
 - failures at lower F_min when higher F_min succeeded
 - failures with more dense discrete sampling when lower density sampling succeeded
- Insensitive to LF data when circuit simulation succeeded
 - Extrapolated DC value not critical ... if not illogical
- Must assure passivity/causality to assure success
 - may sacrifice efficiency, since success is possible without it

Best Known Method

To assure successful system-level SSO analysis ...

- Apply an adaptively sampled frequency sweep in the extraction tool for continuous data. (preference)
- Minimum frequency should be specified below the lowest frequency at which frequency dependent resistance occurs.
- Minimum frequency should be specified high enough to avoid numerical noise in the extraction tool being applied.
- Do not apply explicit DC data that is inconsistent with the AC data.
- Generate a rational function model with assured passivity and causality.
- Apply this rational function directly in the TD circuit simulator.

