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Neural Nets - A Nickel Tour



Convolutional Neural Networks (CNNs)
from a computational point of view

˃ CNNs are usually feed forward* computational 

graphs constructed from one or more layers

Up to 1000s of layers

˃ Each layer consists of neurons nininini which are 

interconnected with synapses, associated with 

weights wijwijwijwij

˃ Each neuron computes: 

Typically linear transform (dot-product of receptive field)

Followed by a non-linear “activation” function
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* With exception of RNNs



Fully Connected Layers 
(aka inner product or dense layers)

˃ Each input activation is connected to every output activation

Receptive field encompasses the full input

˃ Can be written as a matrix-vector product with an element-

wise non-linearity applied afterwards.

˃ Implementation Challenges

Connectivity

High weight memory requirement:  #IN * #OUT * BITS

Low arithmetic intensity assuming weights off-chip 

2 * #IN* #OUT /  #IN * #OUT * BITS/8
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IN: number of input channels
OUT: number of output channels
BITS: bit precision in data types

MODEL

CONV WEIGHTS 
(M) FC WEIGHTS (M)

ResNet50 23.454912 2.048

AlexNet 2.332704 58.621952

VGG16 14.710464 123.633664



Convolutional Layers
Example 2D Convolution

˃ Convolutions capture some kind of locality, spatial or temporal, that we know exists in 

the domain

˃ Receptive field of each neuron reduced

Applying convolution to all images in the previous layer

˃ Weights represent the filters used for convolutions
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i02

2D Convolutional Layers

˃ Slide the window till one feature map is complete

With a given stride size
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2D Convolutional Layers

˃ Compute next channel
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NNs in More Detail
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Fully Connected Layers

Convolutional Layers (CNV)

Pooling Layers (POOL)

Recurrent Layers (RL)

Activation & Batch Normalization



ResNet – A brief history



Image Classification - ImageNet

˃ In 2009, Fei-Fei Li introduced the ImageNet dataset

>14 Million images, 40000 object classes

˃ ImageNet Large Scale Visual Representation Challenge – ILSVRC

Subset of 1000 object classes, 1.2 Million images
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Image Credit: Kaiming He http://kaiminghe.com/



ResNets

˃ Deep networks suffer from the “vanishing gradient” problem

During back propagation, weight values in deep networks may not change significantly during 
the backward pass

‒ Impacts our ability to train deep networks

˃ ResNet was the first network architecture to employ “skip connections” which 

made it possible to train deeper networks with higher accuracy

https://arxiv.org/abs/1512.03385

˃ ResNet50 is so called because the architecture includes 50 convolution layers
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DNNDK ResNet Inference
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DPU – Accelerated in Programmable Logic
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For ResNet50:

70 Layers

7.7 Billion operations 

25.5 MBytes of weight storage*

10.1 MBytes for activations*

*Assuming int8
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Network Inference with 
DNNDK
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○ Prior work

● Server/Workstation

● Zynq SoC

Eval / Dev Flow
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DNNDK Highlights



Quantization
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Compilation – ResNet50 Example
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B4096 ResNet Deployment in DNNDK v2.08
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…….…..
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USB-UART

Baud rate: 115200
Data: 8 bits
Parity: none

Stop: 1 bit
Flow control: none

Power 

supply

SD Card

Use a terminal emulator (e.g. PuTTy) to connect the host PC and the target board

Ethernet

monitor

DP

USB keyboard

USB mouse

USB hub

The host PC with 

ethernet is required to 

transfer files to the 

target board

DP-8020 Board

USB-UART

Xilinx ZU2EG

16nm MPSoC with 

Quad 1.2GHz Cortex-A53 

& Programmable Logic
USB camera

Typical Evaluation / Development Environment



Live Demo
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DSight Profiler
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What have we accomplished
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˃ Demonstrated DECENT model quantization flow

˃ Demonstrated DNNC model compilation flow

˃ Demonstrated ResNet50 model deployment on the ZCU102

˃ Demonstrated Dsight profiling flow



Resources
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https://www.xilinx.com/products/design-tools/ai-inference/ai-

developer-hub.html#edge https://forums.xilinx.com/t5/Deephi-

DNNDK/bd-p/Deephi

https://forums.xilinx.com/t5/Deephi-DNNDK/bd-p/Deephi



Resources
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https://github.com/Xilinx/Edge-AI-Platform-Tutorials https://github.com/jimheaton/Ultra96_ML_Embedded_Workshop



Getting Started

Purchase a supported Xilinx evaluation board (eg ZCU102, ZCU104, 

Ultra96)

Configure a suitable build environment

Experience and modify Xilinx DNN examples
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Evaluate quantization and compilation of Xilinx examples or 

custom models
3



Key Takeaways

DNNDK is able to deploy pre-trained DNN models to Xilinx SoC easily & 

quickly without writing any RTL

DNNDK supports both local and AWS build environments

DNNDK supports deployment of DN models with no FPGA 

experience
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