
Machine Learning for Embedded Demo

Quenton Hall
Avnet Field Applications Engineer | ML Specialist

Boston | March 14

Slide and diagram credits:

Kaiming He | Xiangyu Zhang | Shaoqing Ren | Jian Sun | Clayton Cameron | Michaela Blott | Andy Luo

Neural Nets - A Nickel Tour

Convolutional Neural Networks (CNNs)
from a computational point of view

˃ CNNs are usually feed forward* computational

graphs constructed from one or more layers

Up to 1000s of layers

˃ Each layer consists of neurons nininini which are

interconnected with synapses, associated with

weights wijwijwijwij

˃ Each neuron computes:

Typically linear transform (dot-product of receptive field)

Followed by a non-linear “activation” function
Layer

L0

Layer

L1

Layer

L2

Weights

W2

Weights

W1

Weights

W0

Inputs Outputs

i0

i1

w00

w12

n0

n1

n2

n0 = Act(w00*i0 + w10*i1)

Synapse with weight wji

Neuron ni

>> 3
* With exception of RNNs

Fully Connected Layers
(aka inner product or dense layers)

˃ Each input activation is connected to every output activation

Receptive field encompasses the full input

˃ Can be written as a matrix-vector product with an element-

wise non-linearity applied afterwards.

˃ Implementation Challenges

Connectivity

High weight memory requirement: #IN * #OUT * BITS

Low arithmetic intensity assuming weights off-chip

2 * #IN* #OUT / #IN * #OUT * BITS/8

i0

i1

i2

w00

w23

n0

n1

n2

n3

W00 W01 W02 W03
W10 W11 W12 W13
W20 W21 W22 W23

i0 i1 i2 x = n0’ n1’ n2’ n3’

(n0 n1 n2 n3) = Act(n0’ n1’ n2’ n3’)

>> 4

IN: number of input channels
OUT: number of output channels
BITS: bit precision in data types

MODEL

CONV WEIGHTS
(M) FC WEIGHTS (M)

ResNet50 23.454912 2.048

AlexNet 2.332704 58.621952

VGG16 14.710464 123.633664

Convolutional Layers
Example 2D Convolution

˃ Convolutions capture some kind of locality, spatial or temporal, that we know exists in

the domain

˃ Receptive field of each neuron reduced

Applying convolution to all images in the previous layer

˃ Weights represent the filters used for convolutions

w00 w01

w10 w11

filter

i00 i01

i10 i11

input

i02

i12

i20 i21 i22

* =

output

n00 n01

n10 n11

w00 w01

w10 w11

n00 = Act(w00*i00 + w01*i01+w10*i10 + w11*i11 +
w00*i00 + w01*i01+w10*i10 + w11*i11 +
w00*i00 + w01*i01+w10*i10 + w11*i11)

Input channel 0

>> 5

Output

channels

Feature

maps

i02

2D Convolutional Layers

˃ Slide the window till one feature map is complete

With a given stride size

w00 w01

w10 w11

filter

i00

i10 i11

input

i02

i12

i20 i21 i22

* =

output

n00 n01

n10 n11

w00 w01

w10 w11

Stride = 1

>> 6

2D Convolutional Layers

˃ Compute next channel

w00 w01

w10 w11

filter

i00 i01

i10 i11

input

i02

i12

i20 i21 i22

* =

output

n00 n01

n10 n11

w00 w01

w10 w11

>> 7

Output

channels

NNs in More Detail

Layer

L0

Layer

L1

Layer

L2

Weights

W2

Weights

W1

Weights

W0

Inputs Outputs

Weights

W5

Weights

W4

Weights

W3

Weights

W6

Layer

L3

Layer

L4

Layer

L5

Layer

L6

feature extraction classification

>> 8

Fully Connected Layers

Convolutional Layers (CNV)

Pooling Layers (POOL)

Recurrent Layers (RL)

Activation & Batch Normalization

ResNet – A brief history

Image Classification - ImageNet

˃ In 2009, Fei-Fei Li introduced the ImageNet dataset

>14 Million images, 40000 object classes

˃ ImageNet Large Scale Visual Representation Challenge – ILSVRC

Subset of 1000 object classes, 1.2 Million images

>> 10

Image Credit: Kaiming He http://kaiminghe.com/

ResNets

˃ Deep networks suffer from the “vanishing gradient” problem

During back propagation, weight values in deep networks may not change significantly during
the backward pass

‒ Impacts our ability to train deep networks

˃ ResNet was the first network architecture to employ “skip connections” which

made it possible to train deeper networks with higher accuracy

https://arxiv.org/abs/1512.03385

˃ ResNet50 is so called because the architecture includes 50 convolution layers

>> 11

DNNDK ResNet Inference

>> 12

DPU – Accelerated in Programmable Logic

CPU

or
DPU

S
o
ft
m

a
x

For ResNet50:

70 Layers

7.7 Billion operations

25.5 MBytes of weight storage*

10.1 MBytes for activations*

*Assuming int8

CPU

or
DPU

Network Inference with
DNNDK

>> 14

○ Prior work

● Server/Workstation

● Zynq SoC

Eval / Dev Flow

>> 15

>> 16

>> 17

>> 18

>> 19

>> 20

>> 21

DNNDK Highlights

Quantization

>> 23

Compilation – ResNet50 Example

>> 24

B4096 ResNet Deployment in DNNDK v2.08

>> 25

…….…..

Kernel 0 - DPU

K

E

R

N

E

L

2

D

P

U

K

E

R

N

E
L

1

C

P

U

K

E

R

N

E

L

3

C

P

U

>> 26

USB-UART

Baud rate: 115200
Data: 8 bits
Parity: none

Stop: 1 bit
Flow control: none

Power

supply

SD Card

Use a terminal emulator (e.g. PuTTy) to connect the host PC and the target board

Ethernet

monitor

DP

USB keyboard

USB mouse

USB hub

The host PC with

ethernet is required to

transfer files to the

target board

DP-8020 Board

USB-UART

Xilinx ZU2EG

16nm MPSoC with

Quad 1.2GHz Cortex-A53

& Programmable Logic
USB camera

Typical Evaluation / Development Environment

Live Demo

>> 27

DSight Profiler

>> 28

What have we accomplished

>> 29

˃ Demonstrated DECENT model quantization flow

˃ Demonstrated DNNC model compilation flow

˃ Demonstrated ResNet50 model deployment on the ZCU102

˃ Demonstrated Dsight profiling flow

Resources

>> 30

https://www.xilinx.com/products/design-tools/ai-inference/ai-

developer-hub.html#edge https://forums.xilinx.com/t5/Deephi-

DNNDK/bd-p/Deephi

https://forums.xilinx.com/t5/Deephi-DNNDK/bd-p/Deephi

Resources

>> 31

https://github.com/Xilinx/Edge-AI-Platform-Tutorials https://github.com/jimheaton/Ultra96_ML_Embedded_Workshop

Getting Started

Purchase a supported Xilinx evaluation board (eg ZCU102, ZCU104,

Ultra96)

Configure a suitable build environment

Experience and modify Xilinx DNN examples

1

2

3

Evaluate quantization and compilation of Xilinx examples or

custom models
3

Key Takeaways

DNNDK is able to deploy pre-trained DNN models to Xilinx SoC easily &

quickly without writing any RTL

DNNDK supports both local and AWS build environments

DNNDK supports deployment of DN models with no FPGA

experience

1

2

3

