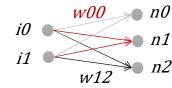
Machine Learning for Embedded Demo

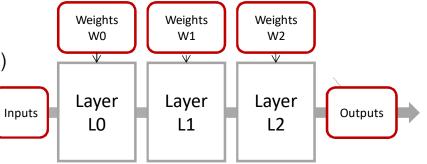
Quenton Hall Avnet Field Applications Engineer | ML Specialist Boston | March 14

Slide and diagram credits: Kaiming He | Xiangyu Zhang | Shaoqing Ren | Jian Sun | Clayton Cameron | Michaela Blott | Andy Luo

Neural Nets - A Nickel Tour



Convolutional Neural Networks (CNNs) from a computational point of view


- > CNNs are usually feed forward* computational graphs constructed from one or more layers
 - >> Up to 1000s of layers
- > Each layer consists of neurons *ni* which are interconnected with synapses, associated with weights *wij*

- >> Typically linear transform (dot-product of receptive field)
- >> Followed by a non-linear "activation" function

Synapse with weight *wji*

>> 3

* With exception of RNNs

Fully Connected Layers (aka inner product or dense layers)

> Each input activation is connected to every output activation

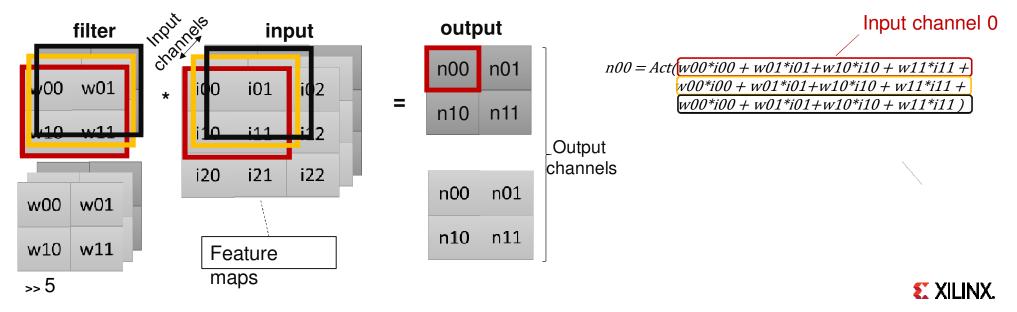
- >> Receptive field encompasses the full input
- > Can be written as a matrix-vector product with an elementwise non-linearity applied afterwards.

> Implementation Challenges

- >> Connectivity
- >> High weight memory requirement: #IN * #OUT * BITS
- >> Low arithmetic intensity assuming weights off-chip
 - 2 * #IN* #OUT / #IN * #OUT * BITS/8

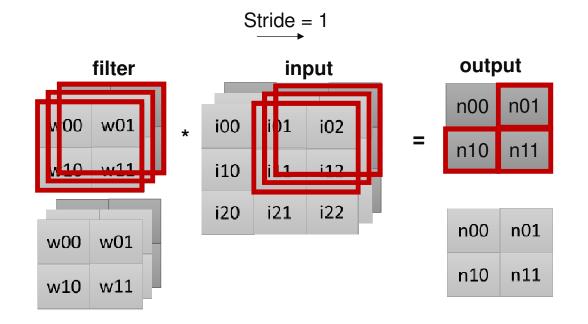
	IN:	number of input channels
>> 4	OUT:	number of output channels
	BITS:	bit precision in data types

$$\left(\begin{array}{c} i0 \ i1 \ i2 \end{array} \right) \times \left(\begin{array}{c} W00 \ W01 \ W02 \ W03 \\ W10 \ W11 \ W12 \ W13 \\ W20 \ W21 \ W22 \ W23 \end{array} \right) = \left(n0' n1' n2' n3' \right)$$

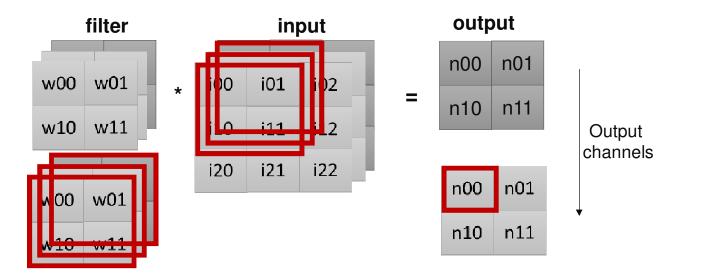

$$(n0 n1 n2 n3) = Act(n0'n1'n2'n3')$$

	CONV WEIGHTS	
MODEL	(M)	FC WEIGHTS (M)
ResNet50	23.454912	2.048
AlexNet	2.332704	58.621952
VGG16	14.710464	123.633664

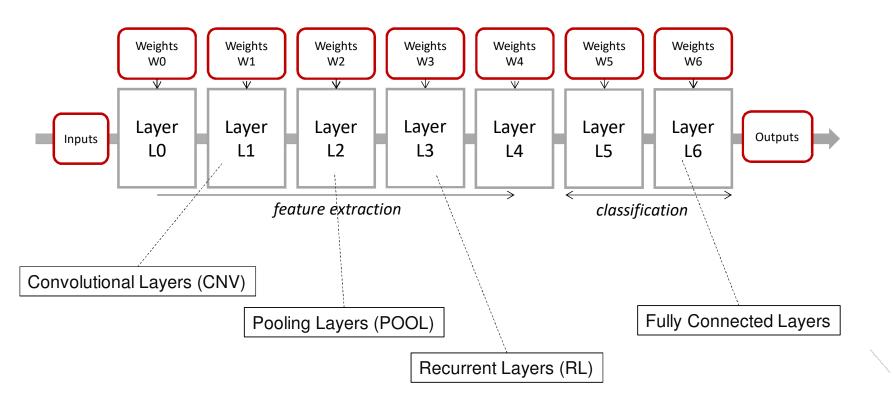
Convolutional Layers Example 2D Convolution


- > Convolutions capture some kind of locality, spatial or temporal, that we know exists in the domain
- > Receptive field of each neuron reduced
 - >> Applying convolution to all images in the previous layer
- > Weights represent the filters used for convolutions

2D Convolutional Layers


> Slide the window till one feature map is complete

>> With a given stride size



2D Convolutional Layers

> Compute next channel

NNs in More Detail

Activation & Batch Normalization

>> 8

ResNet – A brief history

Image Classification - ImageNet

> In 2009, Fei-Fei Li introduced the ImageNet dataset

>> >14 Million images, 40000 object classes

> ImageNet Large Scale Visual Representation Challenge – ILSVRC

» Subset of 1000 object classes. 1.2 Million images

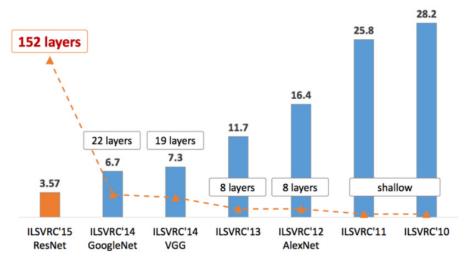
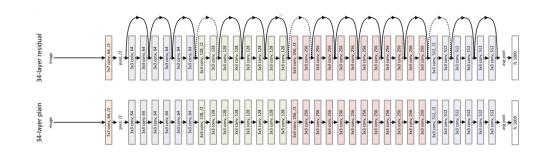
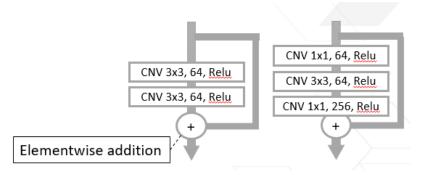


Image Credit: Kaiming He <u>http://kaiminghe.com/</u>

imagenet1000_clsid_to_human.txt

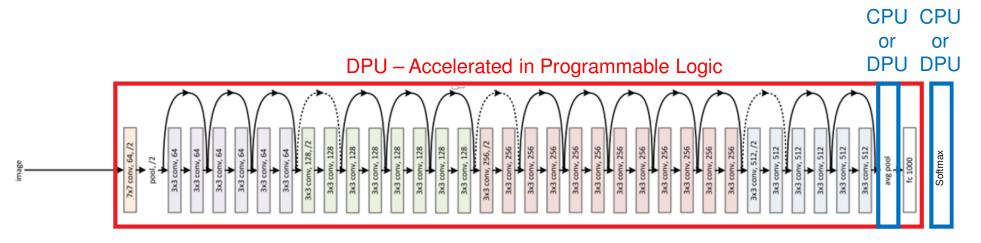

1	{0: 'tench, Tinca tinca',
2	1: 'goldfish, Carassius auratus',
3	2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias',
4	3: 'tiger shark, Galeocerdo cuvieri',
5	4: 'hammerhead, hammerhead shark',
6	5: 'electric ray, crampfish, numbfish, torpedo',
7	6: 'stingray',
8	7: 'cock',
9	8: 'hen',
10	9: 'ostrich, Struthio camelus',
11	10: 'brambling, Fringilla montifringilla',
12	11: 'goldfinch, Carduelis carduelis',
13	12: 'house finch, linnet, Carpodacus mexicanus',
14	13: 'junco, snowbird',
15	14: 'indigo bunting, indigo finch, indigo bird, Passerina cyanea',
16	15: 'robin, American robin, Turdus migratorius',


>> 10

ResNets

> Deep networks suffer from the "vanishing gradient" problem

- During back propagation, weight values in deep networks may not change significantly during the backward pass
 - Impacts our ability to train deep networks
- > ResNet was the first network architecture to employ "skip connections" which made it possible to train deeper networks with higher accuracy
 - https://arxiv.org/abs/1512.03385
- > ResNet50 is so called because the architecture includes 50 convolution layers



E XILINX.

>> 11

DNNDK ResNet Inference

For ResNet50:

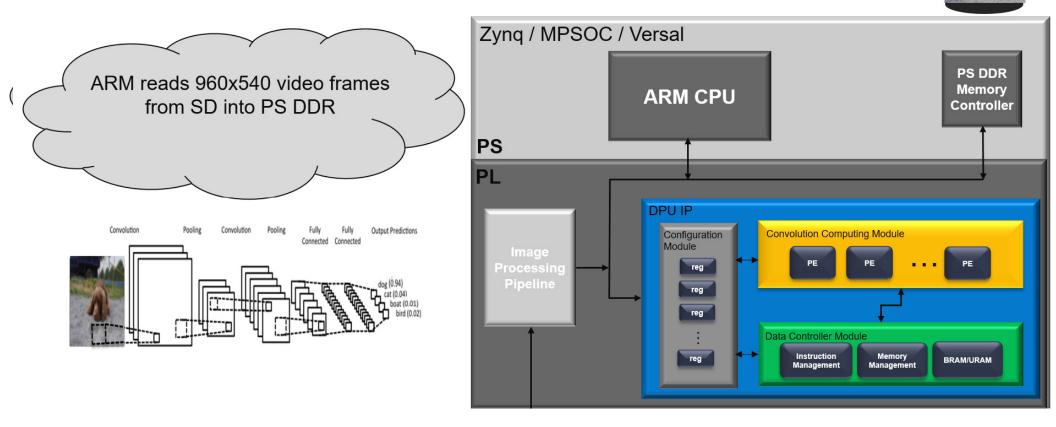
70 Layers

7.7 Billion operations

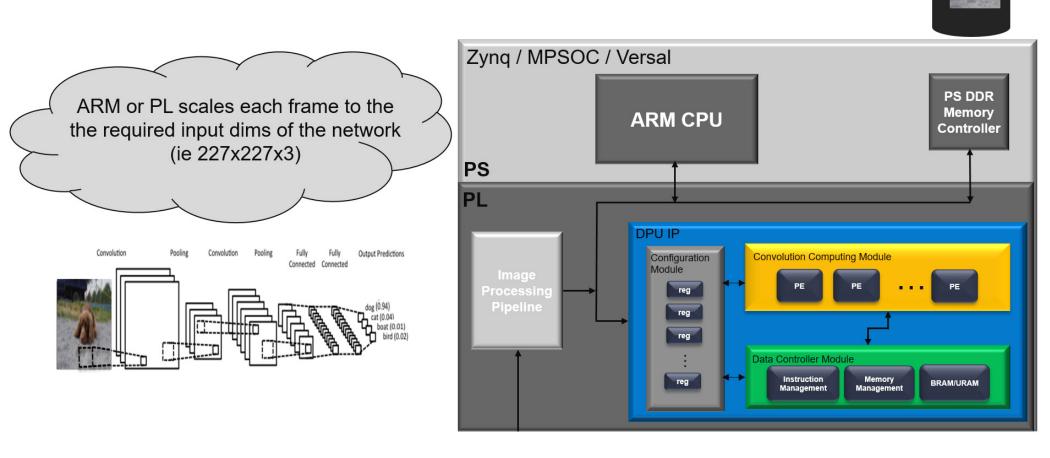
25.5 MBytes of weight storage*

10.1 MBytes for activations*

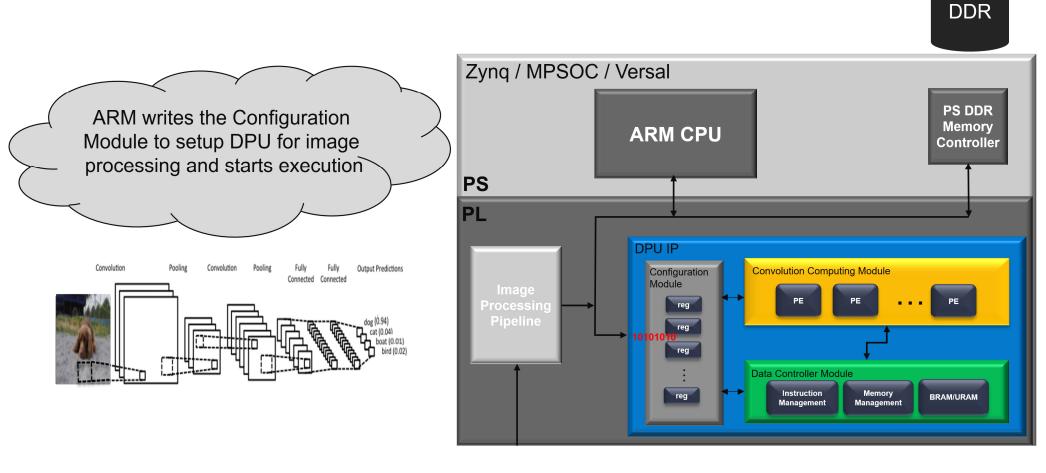
*Assuming int8


>> 12

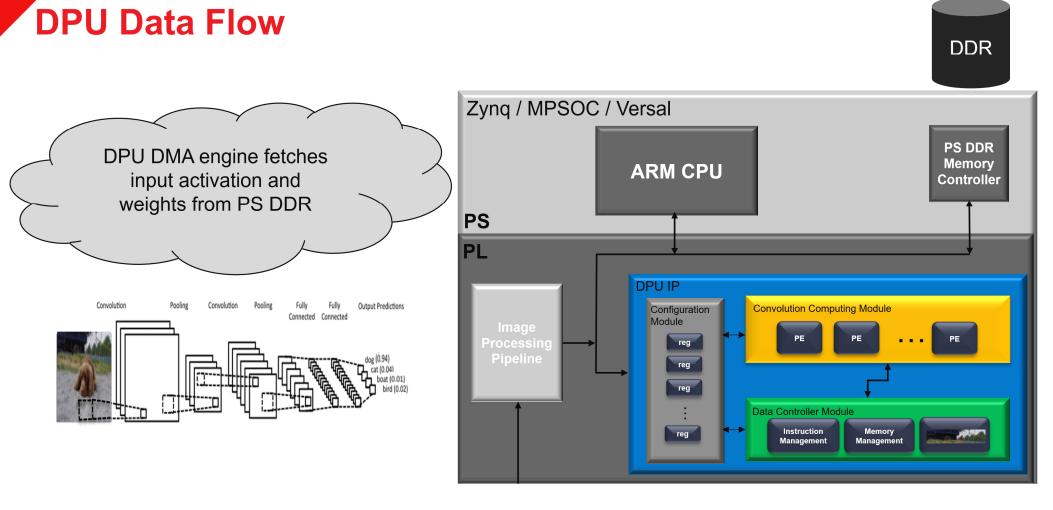
Network Inference with DNNDK



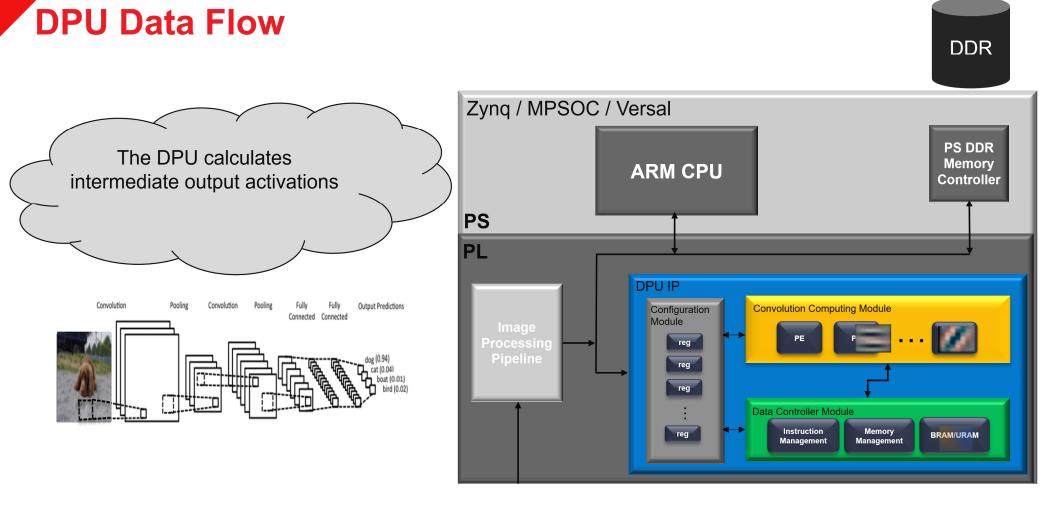
DPU Data Flow



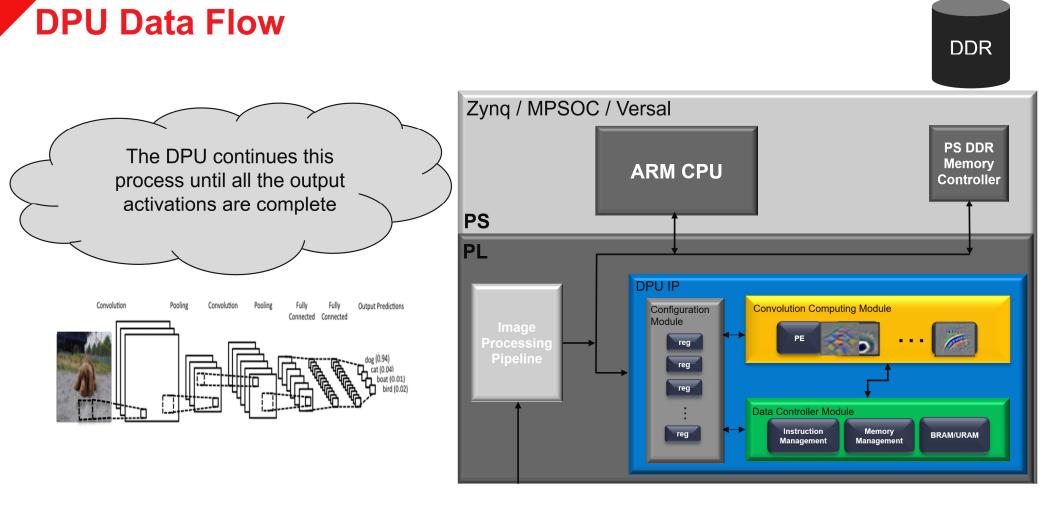
Slide and animation credit – Clayton Cameron and family


DPU Data Flow

Slide and animation credit – Clayton Cameron and family



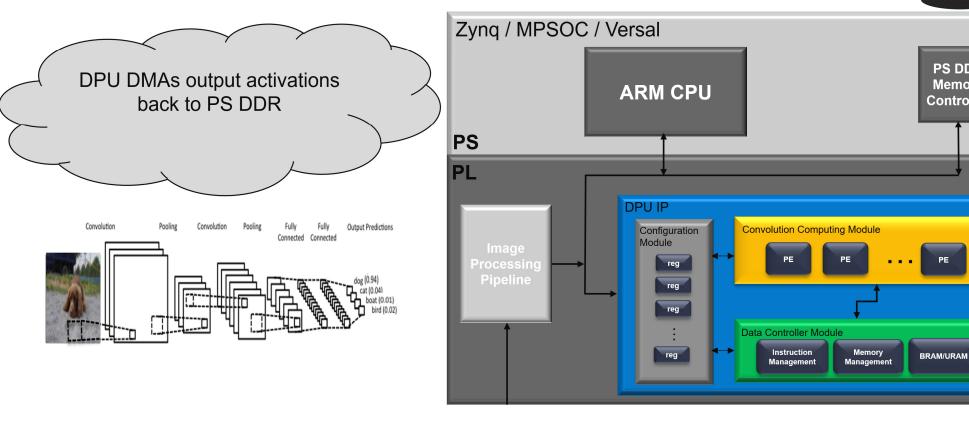
DPU Data Flow


Slide and animation credit – Clayton Cameron and family

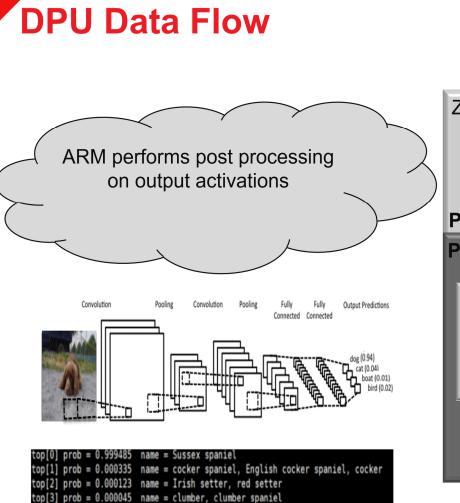
Slide and animation credit – Clayton Cameron and family

Slide and animation credit – Clayton Cameron and family

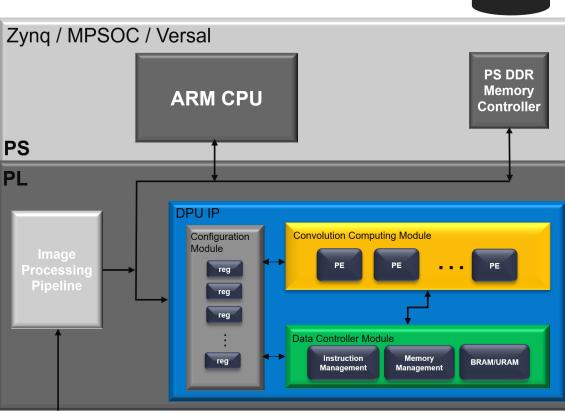
Slide and animation credit – Clayton Cameron and family



PS DDR


Memory

Controller


ΡE

Slide and animation credit – Clayton Cameron and family

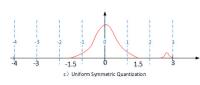
top[4] prob = 0.000005 name = Irish water spaniel

Slide and animation credit – Clayton Cameron and family

E XILINX.

DDR

DNNDK Highlights

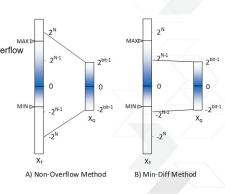


Quantization

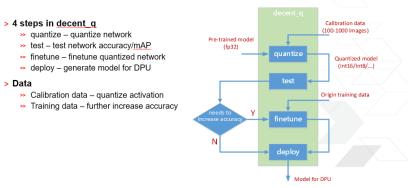
Quantization Strategy

> Our Quantization Strategy

- >> Uniform Symmetric Quantization → 8Bit for Our DPU
- >> Scale = 2^N

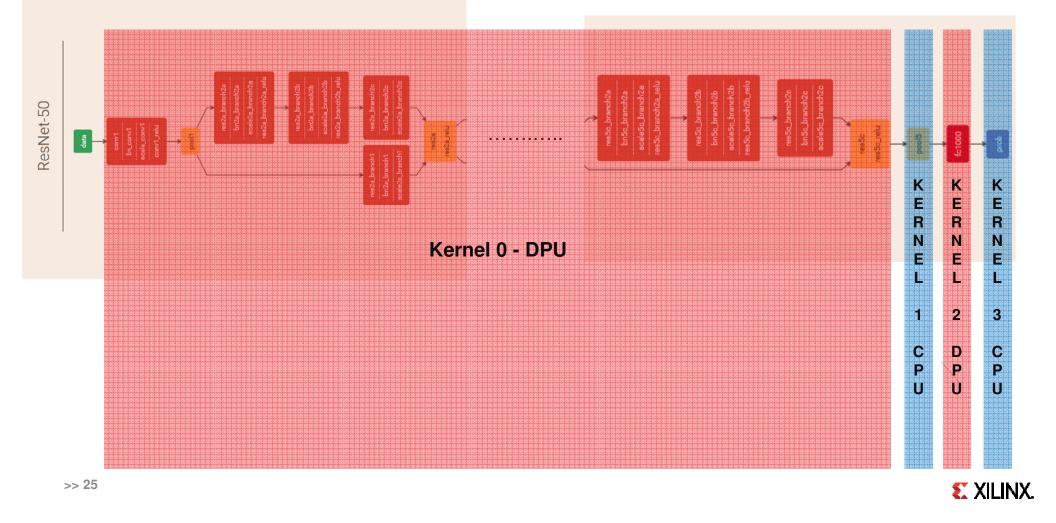


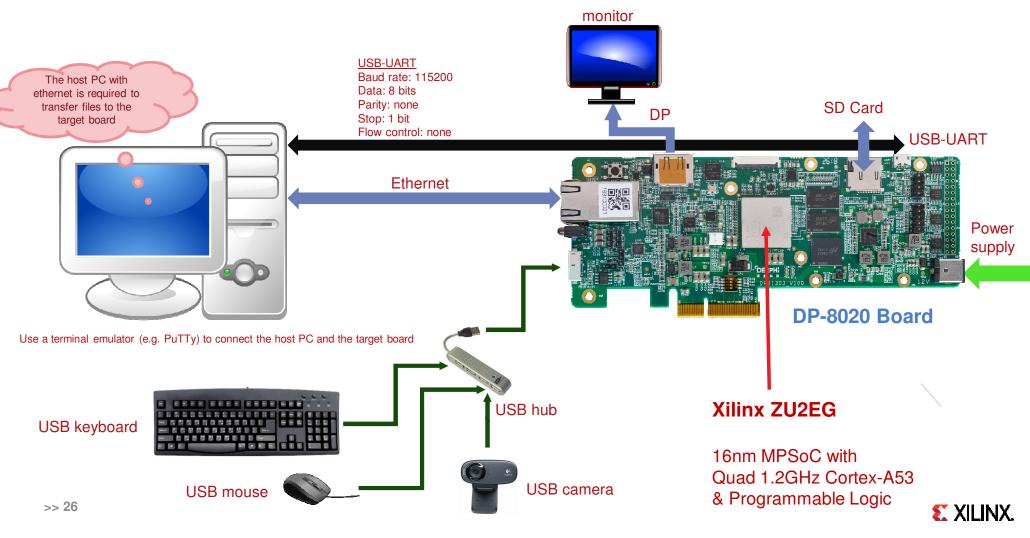
> Advantages


- » Hardware friendly
- >> High efficiency: all fix-point calculation
- » Make use of redundancy of CNN models(especially with BatchNorm Layers)

Two quantization methods

- > Non-Overflow Method:
 - » Choose quantize pos -> all values does not overflow
 - » No saturation
 - Sensitive to large values
- > Min-Diff Method:
 - » Pos = Minimize∑(X_{gi}-X_{fi})²
 - » Need saturated truncation

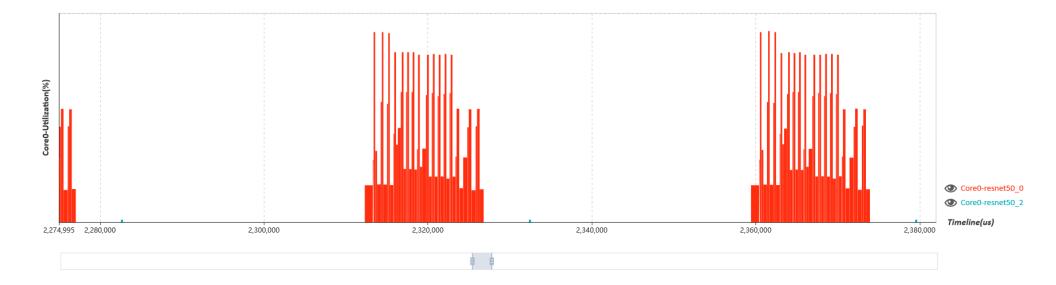

Quantization Tool - decent_q


Compilation – ResNet50 Example

DNNC][Warning]	layer [prob] is not supported in DPU, deploy it in CPU instead. Fail to convert gv file to jpg because 'dot' is not installed in current system. Try to install it using 'sudo apt-get instal e original gv file is saved in 'resnet50_kernel_graph.gv'.	
NNC Kernel Inf	ormation	
. Overview ernel numbers ernel topology	: 4 : resnet50_kernel_graph.jpg	
	iption in Detail	
ernel id ernel name	: 0 : resnet50 0	
ype	: Teshelou : DPUKernel	
odes	: NA	
nput node(s)	: conv1(0)	
utput node(s)	: res5c_branch2c(0)	
ernel id	: 1	
ernel name	: resnet50_1	
ype	: CPUKernel	
odes nput node(s)	: NA : pool5	
utput node(s)	; pool5	
ernel id	; 2	
ernel name ype	: resnet50_2 : DPUKernel	
odes	NA	
nput node(s)	: fc1000(0)	
utput node(s)	: fc1000(0)	
ernel id	: 3	
ernel name	resnet50 3	
уре	: CPUKernel	
odes	: NA	
nput node(s) utput node(s)	: prob : prob	
reput noue(s)		

B4096 ResNet Deployment in DNNDK v2.08

Typical Evaluation / Development Environment


Live Demo

>> 27

DeePhi DSight

DPU Utilization: Core0: 40.2% Schedule Effeciency: Core0: 28.3%

What have we accomplished

- > Demonstrated DECENT model quantization flow
- > Demonstrated DNNC model compilation flow
- > Demonstrated ResNet50 model deployment on the ZCU102
- > Demonstrated Dsight profiling flow

Resources

Edge AI Resources

The following resources are available to help you start developing with the Edge AI Platform.

Edge AI Tools

Product	Documentation	Tool Download	File Size	MD5 Checksum
DNNDK	DNNDK User Guide (UG1327)	xinx_dnndk_v2.08_1902.tar.gz	1007 MB	cf4dade1b3af14437ae97c09691ba381
DNNDK for SDSoC	DNNDK User Guide for SDSoC (UG1331)	xilinx_dnndk_v2.08_for_sdsoc_190214.tar.gz	667 MB	7f165aff5062497e4bb69b70773c49b1

Edge AI Evaluation Boards

Product	Documentation	Image Download	File Size	MD5 Checksum
ZCU102 Kit	ZCU102 User Guide (UG1182)	2018-12-04-zcu102-desktop-stretch.img.zip	571 MB	d0d5faf8ece80b96f5591d09756d5a5d
ZCU104 Kit	ZCU104 User Guide (UG1267)	2018-12-04-zcu104-desktop-stretch.img.zip	571 MB	ada2420c4afbd89efdeea741e0917e26
Avnet Ultra 96	Ultra 96 User Guide	xilinx-ultra96-desktop-stretch-2018-12-10.img.zip	566 MB	c5d2422063213b4bc4c18a3223c6adc8

Edge AI Targeted Reference Designs (TRD)

Product	Image Download & Docs	File Size	MD5 Checksum
DPU TRD	zcu102-dpu-trd-2018-2-1903.zip	459 MB	872170d1038d0c824cb2c808743930e4

Platform Downloads

Product	Download	File Size	MD5 Checksum
ZCU102 SDSoC 2018.3 Platform for DNNDK	zcu102-rv-ss-2018-3-dnndk.tar.gz	1.3 GB	7102c6942eb65d8b9d258914f69c6eaa
ZCU104 SDSoC 2018.3 Platform for DNNDK	zcu104-rv-ss-2018-3-dnndk.tar.gz	1.3 GB	d5bc80aa8135a719e273e2ff6ca85762

<u>https://www.xilinx.com/products/design-tools/ai-inference/ai-developer-hub.html#edge</u> <u>https://forums.xilinx.com/t5/Deephi-DNNDK/bd-p/Deephi</u>

Community Forums > Forums > Applications > Deephi DNNDK

Announcements

Welcome to the Deephi DNNDK Community Forum. This community should serve as a resource to ask and learn about using Deephi DNNDK on all supported platforms, new feature announcements and troubleshooting Al applications.

Most Recent Threads

Before you post, please read our Community Forums Guidelines or to get started see our Community Forum Help.

Discu	issions	Post a	Question
٢	Where is correct img file for ZCU104 by Q tacbook on 03-06-2019 02:28 AM • Latest post on 03-07-2019 01:41 PM by Q qhall	ப் 0	Q 3
	DPU Targeted Reference Design Released to Xilinx.c by Q qhall on 03-05-2019 03-24 PM	1 2	00
(Call	zcu104 boot by 👔 @xx on 03-05-2019 05:43 AM • Latest post on 03-05-2019 09:21 AM by 🚥 meherp	心 0	Q 2
(Tag)	os image zcu104 by 👔 @xx on 03-04-2019 11:27 PM • Latest post on 03-05-2019 09:29 AM by 🚥 meherp	ப் 0	Q 2
E.A	Monitor flickers while runing dnndk example by 👔 deepg799 on 03-04-2019 08:16 PM • Latest post on 03-07-2019 01:16 PM by 🏌 terryo	ப் 0	Q 3
63	Is there simple tutorial for K7 Custom board? by Q trustfarm on 02-28-2019 11:38 PM • Latest post on 03-03-2019 11:44 PM by Q trustfarm	ப் 0	Q 2
	https://forums.xilinx.com/t5/Deephi-DNNDK/bd-p/D	eep	hi

Resources

docs	Updated ML-CIFAR10-Caffe and CATsvsD(OGs tutorials a day
README.md	Update README.md	9 days
README.md		
		AI Tutorials
	Tutorial	Description
	CIFAR10 Caffe Tutorial (UG1335)	Train, quantize, and prune custom CNNs with the CIFAR10 dataset using Caffe and the Xilinx® DNNDK tools.
	Cats vs Dogs Tutorial (UG1336)	Train, quantize, and prune a modified AlexNet CNN with the Kaggle Cats vs Dogs dataset using Caffe and the Xilinx DNNDK tools.
		Train, quantize, and compile SSD using PASCAL VOC

https://github.com/Xilinx/Edge-AI-Platform-Tutorials

📋 jimheaton Add files via upload		Latest commit befa659 3 days ago
💼 images	Add files via upload	3 days ago
src/resnet50	Add files via upload	3 days ago
E README.md	Add files via upload	3 days ago

E README.md

#XDF 2018 Workshop Machine Learning for Embedded on the Ultra96

Introduction

This lab is based on the XDF 2018 Machine learning for Embedded Workshop. It has been modified to run on the Ultra96 board.

During this session you will gain hands-on experience with the Xlinx DNNDK, and learn how to quantize, compile and deploy pre-trained network models to Xilinx embedded SoC platforms.

Overview of DNNDK flow

The architecture DNNDK and its development flow are pictured below:

Elements of DNNDK:

https://github.com/jimheaton/Ultra96 ML Embedded Workshop

Getting Started

Purchase a supported Xilinx evaluation board (eg ZCU102, ZCU104, Ultra96)

Configure a suitable build environment

Experience and modify Xilinx DNN examples

Evaluate quantization and compilation of Xilinx examples or custom models

Key Takeaways

DNNDK is able to deploy pre-trained DNN models to Xilinx SoC easily & quickly without writing any RTL

E XILINX.

DNNDK supports both local and AWS build environments

DNNDK supports deployment of DN models with no FPGA experience