Xilinx ML Suite Overview

Yao Fu System Architect – Data Center Acceleration

Xilinx Accelerated Computing Workloads

Machine Learning Inference Image classification and object detection	10x	E XILINX
Video Streaming Frame rate for HEVC & VP9 encoding	10x	NEST GENERALION VIDEO COMPRESSION
Genomics 20 min vs. 33 hours for whole genome analysis	100x	edico genome
Big Data Analytics 40 min vs. 60 hours for logfile query	90x	ACTIONABLE INTELLIGENCE FROM COMPLEX DATA

Accelerating Al Inference into Your Cloud Applications

Xilinx ML Suite - AWS Marketplace

> ML Suite

>> Supported Frameworks:

- Caffe
- MxNet
- Tensorflow
- Python Support
- Darknet

>> Jupyter Notebooks available:

- Image Classification with Caffe
- Using the xfDNN Compiler w/ a Caffe Model
- Using the xfDNN Quantizer w/ a Caffe Model

>> Pre-trained Models

- Caffe 8/16-bit
 - GoogLeNet v1
 - ResNet50
 - Flowers102
 - Places365
- Python 8/16-bit
 - Yolov2
- MxNet 8/16-bit
 - GoogLeNet v1

>> xfDNN Tools

- Compiler
- Quantizer

https://aws.amazon.com/marketplace/pp/B077FM2JNS

Unified Simple User Experience from Cloud to XBB

Page 6

Overlay Architecture Custom Processors Exploiting Xilinx FPGA Flexibility

- Customized overlays with ISA architecture for optimized implementation
- Easy plug and play with Software Stack

MLP Engine
Scalable sparse and dense implementation

xDNN – CNN Engine for Large 16 nm
Xilinx Devices
Deephi DPU – Flexible CNN Engine
with Embedded Focus
CHaiDNN – HLS based open source
offering

Deephi ESE LSTM Speech to Text engine

Random Forest Configurable RF classification

Deep Learning Models

Multi-Layer Perceptron

- Classification
- Universal Function Approximator
- Autoencoder

Convolutional Neural Network

- Feature Extraction
- Object Detection
- Image Segmentation

Recurrent Neural Network

- Sequence and Temporal Data
- Speech to Text
- Language Translation

Classification

"Dog"

Object Detection

Segmentation

Rapid Feature and Performance Improvement

>xDNN-v1

- -500 MHz
- URAM for feature maps without caching
- Array of accumulator with
- -16 bit(batch 1), 8 bit(batch 2)
- Instructions: Convolution,Relu, MaxPool,AveragePool,Elementwise
- Flexible kernel size(square) and strides
- Programmable Scaling
- **Q4CY17**

>xDNN-v2

- -500 MHz
- -All xDNN-v1 features
- –DDR Caching: LargerImage, CNN Networks
- Instructions: Depthwise Convolution,Deconvolution,Convolution,Transpose Upsampling
- -Rectangular Kernels
- -Q2CY18

>xDNN-v3

- -700 MHz
- –Feature compatible with xDNN-v2
- New Systolic ArrayImplementation: 50%Higher FMAX and 2.2xtime lower latency
- Batch of 1 for 8 bit implementation
- Non-blocking Caching and Pooling
- -Q4CY18

Break Through on Peak Performance

➤ GPU: Introduce new architectures and silicon

➤ Xilinx: Adapt the break through of emerging domain knowledge

FPGA Deep Learning Peak Power Efficiency

Seamless Deployment with Open Source Software

xfDNN Inference Toolbox

Graph Compiler

 Python tools to quickly compile networks from common
 Frameworks – Caffe, MxNet and Tensorflow

Network Optimization

 Automatic network optimizations for lower latency by fusing layers and buffering on-chip memory

xfDNN Quantizer

- Quickly reduce precision of trained models for deployment
- Maintains 32bit accuracy at 8 bit within 2%

xfDNN Graph Compiler

xfDNN Network Optimization Layer to Layer

Unoptimized Model

xfDNN Intelligently Fused layers Streaming optimized for URAM

xfDNN Network Deployment

Fused Layer Optimizations

- Compiler can merge nodes
 - (Conv or EltWise)+Relu
 - Conv + Batch Norm
- Compiler can split nodes
 - Conv 1x1 stride 2 -> Maxpool+Conv 1x1 Stride 1

On-Chip buffering reduces latency and increases throughput

- xfDNN analyzes network memory needs and optimizes scheduler
 - For Fused and "One Shot" Deployment

"One Shot" deploys entire network to FPGA

- Optimized for fast, low latency inference
- Entire network, schedule and weights loaded only once to FPGA

xfDNN Quantizer: FP to Fixed-Point Quantization

> Problem:

- >> Nearly all trained models are in 32-bit floating-point
- Available Caffe and TensorFlow quantization tools take hours and produce inefficient models

>>

Introducing: xfDNN Quantizer

- A customer friendly toolkit that automatically analyses floating-point ranges layer-by-layer and produces the fixed-point encoding that looses the least amount of information
 - Quantizes GoogleNet in under a minute
 - Quantizes 8-bit fixed-point networks within 1-3% accuracy of 32-bit floating-point networks
 - Extensible toolkit to maximize performance by searching for minimal viable bitwidths and prune sparse networks

xfDNN Quantizer: Fast and Easy

- Provide FP32 network and model
 - E.g., prototxt and caffemodel

- 2) Provide a small sample set, no labels required
 - 16 to 512 images

- 3) Specify desired precision
 - Quantizes to <8 bits to match Xilinx's DSP

Seamless Deployment with Open Source Software

Xilinx ML Processing Engine – xDNN

Features		Description		
	Convolution / Deconvolution / Convolution Transpose	Kernel Sizes	W: 1-15; H:1-15	
		Strides	W: 1,2,4,8; H: 1,2,4,8	
		Padding	Same, Valid	
		Dilation	Factor: 1,2,4	
		Activation	ReLU	
		Bias	Value Per Channel	
		Scaling	Scale & Shift Value Per Channel	
	Max Pooling	Kernel Sizes	W: 1-15; H:1-15	
Supported		Strides	W: 1,2,4,8; H: 1,2,4,8	
Operations		Padding	Same, Valid	
	Avg Pooling	Kernel Sizes	W: 1-15; H:1-15	
		Strides	W: 1,2,4,8; H: 1,2,4,8	
		Padding	Same, Valid	
	Element-wise Add	Width & Height must match; Depth can mismatch.		
	Memory Support	On-Chip Buffering, DDR Caching		
	Expanded set of image sizes	Square, Rectangular		
	Upsampling	Strides	Factor: 2,4,8,16	
Miscellaneous	Data width	16-bit or 8-bit		

- ➤ Programmable Feature-set
- > Tensor Level Instructions
- > 500+MHz DSP Freq (VU9P)
- Custom Network Acceleration

Alveo – Breathe New Life into Your Data Center

ML Suite Overlays with xDNN Processing Engines

Adaptable > Al algorithms are changing rapidly > Adjacent acceleration opportunities **xDNN** DDR PΕ xDNN PE Realtime **xDNN** > 10x Low latency than CPU and GPU Platform > Data flow processing **Efficient** CPU > Performance/watt > Low Power

xDNN PEs Optimized for Your Cloud Applications

Throughput, Multi-Network Optimized

Latency, High Res Optimized

Overlay Name	DSP Array	#PEs	Cache	Precision	GOP/s	Optimized For	Examples Networks
Overlay_0	28x32	4	4 MB	Int16	896	Multi-Network, Maximum Throughput	ResNet50 (224x224)
Overlay_1	28x32	4	4 MB	Int8	1,792	Multi-Network, Maximum Throughput	ResNet50 (224x224)
Overlay_2	56x32	1	5 MB	Int16	1,702	Lowest Latency	Yolov2 (224x224)
Overlay_3	56x32	1	5 MB	Int8	3,405	Lowest Latency	Yolov2 (224x224)

Real-time Inference

Inference with batches

- »Require batch of input data to improve data reuse and instruction synchronization
- >> High throughput depends on high number of batch size
- »High and unstable latency
- >> Low compute efficiency while batch is not fully filled or at lower batch size © Copyright

> Real Time Inference

- No requirement for batch input data
- Throughput less related to batch size
- Low and deterministic latency
- Consistent compute efficiency

Xilinx - High Throughput at Real-Time

GoogLeNet V1 Performance

Fast Advantages in Machine Learning Inference

INCREASE REAL-TIME MACHINE LEARNING* THROUGHPUT BY 20X

^{*} Source: Accelerating DNNs with Xilinx Alveo Accelerator Cards White Paper

ML Suite Performance Roadmap

Page 27

Visit Xilinx.com/ML for more information

https://www.xilinx.com/applications/megatrends/machine-learning.html

Adaptable. Intelligent.

