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Here’s to 30 Years of Innovation 
and to Many Decades More

Xilinx celebrated its 30th anniversary in February. As someone who is a relative new-
comer, having joined the company in 2008, I find it remarkable how far and fast
Xilinx and the devices we make have advanced in just the last six years. I can’t imag-

ine what it must be like for the employees who have been with the company essentially from
the beginning, when Xilinx was a tiny startup on Hamilton Avenue in San Jose offering what
to many seemed like a crazy technology with an even crazier business model. 

FPGAs and the fabless semiconductor business model are mainstays of the industry
today, but back in 1984 that wasn’t the case. Years ago, I had the pleasure of interviewing
Bill Carter, who in the Xilinx world is a bit of a living legend, having laid out the industry’s
very first FPGA, the XC2064, and later becoming Xilinx’s first CTO. Of the many great
recollections Bill shared regarding his years at Xilinx, one of the most memorable was the
story of his job interview with Xilinx’s co-founders: Ross Freeman (who invented the
FPGA), Bernie Vonderschmitt and Jim Barnett. Basically, the founders laid out their plans
to come up with a reprogrammable device and have it manufactured by Seiko-Epson.

“I took one look at the architecture and thought they were nuts,” said Carter. “Back then,
silicon real estate was precious and their new circuit structure took so many transistors to
implement. But the idea of being able to reprogram the hardware was revolutionary.” 

The business model was sort of nuts too for that time. Back in 1984, everyone manufac-
tured their own chips and the biggest barrier to entry into the business was securing enough
funding to build a factory. Carter recalled that Vonderschmitt knew manufacturing from his
days at RCA and could call on his friends at Seiko (to whom he had shown the silicon-man-
ufacturing ropes while working at RCA) to produce the chips. 

So here was Bill Carter, with a young family and a mortgage to pay, working a solid job
for established Zilog, creator of the Z80. He walked away to take a chance with Xilinx. The
rest is history. Xilinx introduced FPGAs to the world in 1985, and years later the fabless
model under the leadership of TSMC became the mainstream way to produce chips. 

What I realize 30 years after the fact is that while many personalities have come and gone
and shaped the character of Xilinx, the risk-taking, innovative spirit that launched the com-
pany is still thriving here. In the last six years, I’ve been an eyewitness to Xilinx gaining a
Generation Ahead lead over the competition at the 28-nanometer node by means of innova-
tive silicon (7 series All Programmable FPGAs, SoCs and 3D ICs) and tools (the Vivado®

Design Suite). What’s more, Xilinx is stretching that lead with first-to-market 20-nm
UltraScale™ devices. And you can count on even bigger innovations coming down the pike
as the era of the FinFET arrives. This pioneering spirit is charged by the remarkable inno-
vations Xilinx customers have created with our chips over the last 30 years. I’m sure we’ll
see even more customer innovations in the decades ahead. 

Editor’s Note: If you are interested in reading about the early pioneering years of Xilinx and the

fabless industry, I recommend this great piece, “Xilinx and the Birth of the Fabless Semiconductor

Industry,” written by Xcell Daily’s editor, Steve Leibson. If you want to keep up to date with the

future Xilinx innovations, please keep reading and contributing great technical content to Xcell
Journal—now proudly in our 26th year of publishing. 

Mike Santarini
Publisher
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Xilinx’s New SDNet 
Environment Enables 
‘Softly’ Defined 
Networks
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With Xilinx technology, 
design teams can now 
build a line card on a chip 
and tailor their hardware 
for specific network 
services and applications.  

by Mike Santarini 
Publisher
Xcell Journal 
Xilinx, Inc.
mike.santarini@xilinx.com

At a time when communications architectures are 
rapidly evolving, driven by consumer demand for 
greater bandwidth and better, more reliable and se-
cure services, Xilinx has innovated a game-chang-
ing technology and design approach that will en-
able its customers to quickly produce and upgrade 
next-generation line cards for wired and wireless 
networks as well as data centers. The new technol-
ogy is SDNet, a software-defined specification envi-
ronment. When used with Xilinx® All Programmable 
FPGAs and SoCs, SDNet allows communications 
design groups to apply a revolutionary approach 
that Xilinx calls “Softly” Defined Networks to the 
design and upgrade of line cards for the next gen-
eration of software-defined network architectures. 

FROM FIXED NETWORKS TO SDN  
The communications architectures of the past 20 
years have mainly comprised fixed control and data 
planes that didn’t expand as network requirements 
evolved, said Nick Possley, vice president of commu-
nications IP and services at Xilinx. This rigid architec-
ture required carriers to replace equipment frequent-
ly if they wanted to expand network functionality 
and increase overall bandwidth. The line cards at the 
heart of these systems were largely based on a mix 
of highly specialized ASICs, ASSPs and memory ICs. 
FPGAs served to accelerate and bridge communica-
tions among the chips on the line card.
 As the pace of demand quickened, carriers and the 
communications systems companies that serve them 
sought better alternatives. In the last few years, they 
have turned to software-defined networks (SDN) 
and network functions virtualization (NFV). These 
architectures separate the control and data planes, 
and add more software virtualization to the control 

A
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system vendors are forced to compete 
on lowest pricing to carriers. 

On the surface, one would think the 
carriers would love this lower equip-
ment pricing. But in reality, fixed da-
ta-plane designs even in ASSP-based 
SDN architectures are still so rig-
id that carriers will have to make 
expensive in-field line-card swaps 
when they find out the ASSP’s fixed 
hardware functionality can’t accom-
modate ever-changing applications, 
protocol updates and new feature re-
quirements. These line-card swaps 
require networks to shut down while 
technicians remove obsolete cards and 
install new ones. What’s more, ASSP 
vendors tend to overbuild the func-
tionality of their designs in an attempt 
to address a broad number of markets 
with a single device. As a result, these 
ASSP-based line cards tend to be pow-
er hungry and thus run hot, so carriers 
must take extra measures to keep the 
equipment cool. The cost of cooling, 
of course, adversely affects operating 
expenditures and further cuts into a 
carrier’s bottom-line profitability.

A BETTER SOLUTION: SOFTLY 
DEFINED NETWORKS
With SDNet and Xilinx’s revolution-
ary softly defined network approach, 
communications systems companies 
can develop integrated, low-power, All 
Programmable line cards that boast 
far more than a software-defined con-
trol plane with network intelligence 
required by SDN architectures. This 
new technology will also let vendors 
differentiate their systems with soft-
ware-defined data-plane hardware 
that has content intelligence, mean-
ing that design teams can tailor the 
hardware to the exact network ser-
vices and applications their systems 
require (Figure 2).
 Traditionally, network architects 
(who typically don’t have hardware 
design backgrounds) express the re-
quirements of particular protocols in 
English-language descriptions, such as 
Internet requests for comment (RFCs) 
or ISO standards documents. 

They then have to rely on specialized 
engineers who are very well-versed in the 
underlying architecture of the target de-
vice to manually turn those requirements 
into low-level, implementation-specific, 
descriptions (typically using highly spe-
cialized microcode). These hardware 
engineers will either specify how the gen-
eral-purpose processors or specialized 
network processors should perform the 
packet processing, or they will design the 
functionality into a custom ASIC. 

Network design teams then have to 
verify that hardware achieves the ar-
chitect’s original design intent or can 
at least accommodate the most recent 
version of the protocol they intend 
the card to use. If the line card doesn’t 
meet the requirements, they have to 
repeat the design process until they 
get it to work properly. This process 
is complicated by the fact that the re-
lationship between the desired speci-
fication and the microcode is not intu-
itive and the underlying architecture 
has performance limitations and ca-
pabilities that vary based on the ser-
vices companies are targeting.

plane. As a result, carriers can rapidly 
deploy new applications, and network 
equipment is easier to upgrade than in 
traditional networks. This improves lon-
gevity (and profitability) and simplifies 
network management (Figure 1). 
 But Possley said that even the most 
recent SDN and NFV architectures are 
too rigid in that the data planes are 
not programmable and the designs 
typically are based on off-the-shelf 
ASSPs. The line cards at the heart of 
the network use discrete off-the-shelf 
packet-processor and traffic-manag-
er ASSPs connected to optics, along 
with coprocessors and external mem-
ory. The cards also include FPGAs to 
accelerate communications among all 
of these chips. 

The latest versions of ASSPs that 
various chip makers have created for 
SDN and NFV architectures do comply 
with SDN specifications. But because 
the suppliers make the same ASSPs 
generally available to all network sys-
tems companies, these chips provide no 
competitive product differentiation or 
feature expansion. As a result, network 

Figure 1 – Today’s software-defined networks separate the control and data planes but still 
have fixed data planes, minimal differentiation and short life cycles.
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SDNet’s softly defined network ap-
proach goes to the root of this prob-
lem and allows network system design 
teams to quickly design line cards that 
are correct by construction. In partic-
ular, SDNet focuses on automating the 
most complex aspect of line card de-
sign—namely, the design and program-
ming of the packet-processor and traf-
fic-manager functions in modern line 
cards (Figure 3).

Instead of having two separate, 
discrete ASSPs handling these func-
tions, network systems teams can 
integrate packet processing and traf-
fic management as well as other line 
card functionality on a single Xilinx 
All Programmable FPGA or SoC. They 
can ensure they are creating optimal 
implementations for their targeted ap-
plications. In addition to integrating 
the functionality of many chips into 
one All Programmable device, SDNet 

streamlines the creation of a high-lev-
el behavioral specification of the line 
card and automatically generates RTL 
blocks for implementation in Xilinx All 
Programmable devices, firmware and a 
validation testbench.

“With SDNet, system architects speci-
fy the ‘what,’ not the ‘how,’” said Possley. 
“System architects specify the exact 
services they are looking to deploy 
without regard as to how they are being 
deployed in the underlying silicon.”

In the SDNet flow, system architects 
define line-card functionality using 
a high-level functional specification 
(Figure 4). SDNet allows architects 
to describe the required behavior of 
various types of packet-processing en-
gines, including parsing, editing, search 
and quality-of-service (QoS) policy en-
gines. Architects can describe engines 
hierarchically in terms of simpler sub-
engines that they can interconnect and 

arrange into packet data flows. These 
subengines can include user-provid-
ed engines. The SDNet specification 
environment contains no implementa-
tion details. That gives customers the 
freedom to scale the performance and 
resources of their design without the 
need to understand the details of the 
underlying architecture. The SDNet 
specifications are also not limited to 
any specific network protocols.

Possley said that SDNet is simple, 
and the select few customers with 
whom Xilinx beta tested it have found 
it very intuitive and easy to use. “It dra-
matically cuts the amount of code they 
have to produce into a simple and in-
tuitive specification and is, therefore, 
orders-of-magnitude less effort com-
pared with microcoding a network 
processor,” he said. 

Once architects have finished defining 
the system engines and flows in the SD-

Figure 2 – SDNet brings flexibility and automation to the data plane, enabling a softly defined  
network approach for the design and upgrade of next-generation networks. 
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Net specification environment, they pro-
vide SDNet’s compiler with throughput 
and latency requirements and run-time 
programmability requirements that influ-
ence the optimized hardware architecture 
generated by the compiler. They then ex-
ecute a command, and SDNet’s compiler 
automatically generates the RTL for the 
hardware blocks the design requires. The 
compiler also generates firmware and a 
verification/validation testbench. The SD-
Net design environment includes integra-
tion of Xilinx-optimized SmartCOREs for 
networking and LogiCOREs™ for con-
nectivity, external memory control and 
embedded processors. 

After compilation, network engi-
neers can then finish the implementa-
tion of the design in the Vivado® Design 
Suite using the IP Integrator (IPI) tool. 
They first use the Vivado tools and IPI to 
transform the RTL architecture descrip-
tion the SDNet compiler has generated 
into an optimized Xilinx FPGA imple-
mentation. They can then integrate any 
additional line-card functionality into 
the FPGA, given sufficient resources on 
the device they’ve selected, essentially 

Figure 3 – With SDNet, companies can create a highly integrated All Programmable line cards.

Figure 4 – The SDNet-based implementation flow enables correct-by-construction  
design of an All Programmable line card.
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creating an All Programmable line card 
on a chip. 

What’s more, SDNet generates data 
for functional verification and valida-
tion to guide correct-by-construction 
design. Specifically, SDNet’s compiler 
accepts a collection of test packets for 
testing input and output of the design. 
Architects can use the packets in the 
specification-definition phase of the 
process to ensure they are creating an 
accurate interpretation of the SDNet 
description. Network engineers can 
use test packets during the simulation 
of the RTL description generated by 
the SDNet compiler. Last but not least, 
the packets can help with hardware 
validation of the final implementation 
of the design using network test equip-
ment. In addition, SDNet will generate 
corresponding contents for search 
engine lookup tables. This verifica-
tion-and-validation ability vastly re-
duces design time and eliminates iter-
ations between system architects and 
network hardware engineers, allowing 
the teams to get highly differentiated 
products to market faster. 

Gordon Brebner, distinguished engi-
neer at Xilinx, said the compiler auto-
matically generates custom firmware 
operations and their binary encodings 
for each individual component in the 
architecture. “This gives architects an 
intimate level of control over the pro-
cessing,” he said. SDNet has a utility 
that keeps a record of runs and stores 
details of the generated architecture 
and its firmware. When users rerun 
the compiler with an updated SDNet 
description as input, it determines 
whether the change can be accom-
modated with a firmware update only 
(without generation of new hardware), 
or whether a regeneration of the hard-
ware (and firmware) is needed. In 
most cases, medium-scale updates, 
such as adding or subtracting a pro-
tocol the line card will handle, can be 
done through firmware updates only.

“The intimate connection between 
the firmware and the architecture, 
which are both generated by SDNet’s 

compiler, means that users can per-
form hitless upgrades, whereby the 
firmware is changed and placed into 
service without disrupting the flow of 
packets,” said Brebner. “In this way, 
companies can perform significant 
service upgrades without any interrup-
tion to the service. This revolutionary 
development is achieved through the 
unique nature of the SDNet technology 
and its coupling of high-level specifi-
cations with Xilinx All Programmable 
devices” (Figure 5).
 “SDNet’s ability to generate datapath 
processing functions that support 
hitless, in-service updates is unique,” 
said Possley. “Carriers can update 
line card components with new fea-
tures or capabilities using a software 
controller via standard SDNet APIs. 

They can run the updating software 
on an embedded soft processor or 
on an external processor.” Of course, 
if they implemented the design on a 
Xilinx Zynq®-7000 All Programma-
ble SoC, he added, they can run the 
software on the device’s embedded 
ARM® processor. 

“SDNet offers full hardware pro-
grammability under software control, 
which is why we call it  ‘softly’ defined 
networking,” Possley said.

For more information on the SDNet 
specification environment, including 
a video demonstration of SDNet in 
action, visit www.xilinx.com/sdnet. 
At the same site, you will find an in-
depth white paper entitled “Software 
Defined Specification Environment for 
Networking (SDNet).”  

Figure 5 – After deployment, SDNet allows vendors to update  
protocols on line cards without interrupting service.
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Xilinx’s 20-nm  
UltraScale Architecture 
Advances Wireless  
Radio Applications
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U
pcoming 5G wireless communications sys-
tems will likely be required to support much 
wider bandwidths (200 MHz and larger) than 
the 4G systems used today, along with large 
antenna arrays, enabled by higher carrier fre-

quencies, that will make it possible to build much smaller 
antenna elements. These so-called massive MIMO applica-
tions, together with more stringent latency requirements, 
will increase design complexity by an order of magnitude.
 At the end of last year, Xilinx announced the 20-nano-
meter UltraScale™ family and the first devices are now 
shipping [1,2,3]. This new technology brings many ad-
vantages over the previous 28-nm 7 Series generation, 
especially for wireless communications. Indeed, the com-
bination of this new silicon and the tools of the Xilinx® 
Vivado® Design Suite [4, 5] is a perfect fit for high-perfor-
mance signal-processing designs such as next-generation 
wireless radio applications. 

Let’s look at the benefits of the UltraScale devices for 
such designs, with a focus on architectural aspects—
specifically, the advantages of the enhancements brought 
to the DSP48 slices and Block RAMs for the implementa-
tion of some of the most common functionalities used in 
radio digital front-end (DFE) applications. The UltraScale 
family offers much denser routing and clocking resources 
compared with the 7 Series devices, enabling better device 
utilization, especially for high-speed designs. However, 
these features do not usually have a direct impact on de-
sign architectures, so we will not address them here.

OVERVIEW OF ENHANCEMENTS  
TO ULTRASCALE FABRIC 
Moving to 20 nm not only enables the higher integration ca-
pabilities, improved fabric performance and lower power 
consumption that come with any geometry node migration, 
but the UltraScale 20-nm architecture also includes several 
new, greatly enhanced features that directly support DFE 
applications. This is especially true for the UltraScale Kin-
tex® devices, which Xilinx has highly tuned to the needs of 
this type of design. 
 First, these devices contain up to 5,520 DSP48 slices. 
That’s almost three times more than the maximum count 
of 1,920 available on 7 Series FPGAs (2,020 for the Zynq®-
7000 All Programmable SoC). Higher levels of integration 
are therefore possible. For example, you can implement a 
complete 8Tx/8Rx DFE system with instantaneous band-
width of 80 to 100 MHz in a single midrange UltraScale 
FPGA, while a two-chip solution is necessary on the 7 Se-
ries architecture, with each chip effectively supporting a 
4x4 system. For a detailed functional description of such 
designs, read the Xilinx white paper WP445, “Enabling 
High-Speed Radio Designs with Xilinx All Programmable 
FPGAs and SoCs” [6].

Next-generation 5G 
systems will be complex  
to design. UltraScale 
devices have built-in 
functionality that will 

make the job easier.  

by Michel Pecot 
Wireless Systems Architect  
Xilinx, Inc. 
michel.pecot@xilinx.com
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With the thermal constraints imposed 
by passively cooled remote radios, the 
integration of complex designs into a 
single device requires a significant pow-
er reduction to be able to dissipate the 
heat. The UltraScale family offers such 
a capability, with 10 to 15 percent less 
static power compared with 7 Series 
devices of the same size, and 20 to 25 
percent less dynamic power for similar 
designs. Furthermore, Xilinx has also 
significantly lowered serdes power con-
sumption in the UltraScale product line.

There is a performance advantage 
as well. The slowest-speed-grade Ul-
traScale devices support designs with 
clock rates higher than 500 MHz, while 
midspeed grade is required for the 7 Se-
ries devices. However, even here, Block 
RAMs are  still demanding from a timing 
perspective, and WRITE_FIRST or NO_
CHANGE modes need to be selected 
to reach this kind of performance. You 
cannot use READ_FIRST, since it is lim-
ited to around 470 MHz, while 530 MHz 
is achievable for the other two modes. 
NO_CHANGE is your best choice when-
ever possible, since it also minimizes 
the power consumption. 

Similarly, the serdes can support 
a throughput of up to 12.5 Gbps on 
the slowest UltraScale speed grade, 
hence enabling the maximum speed of 
JESD204B interfacing, which should be 
soon available on most DACs and ADCs. 
Similarly, the lowest speed grade can 
also support the two highest CPRI rates 
(rates 7 and 8, with respective through-
puts of 9.8304 and 10.1376 Gbps) as well 
as 10GE interfaces, which are common-
ly used in DFE systems.

In addition, the UltraScale Kintex re-

paths. Functions for data multiplex-
ing, especially two-input multiplex-
ers, can benefit from this feature too. 
LUT/SRL compression, however, must 
be used carefully when targeting high 
clock rates. First, you must use the 
two flip-flops connected to the O6/
O5 LUT outputs to avoid any timing 
issues. For the same reasons, it is rec-
ommended to apply this capability to 
related logic only, a strategy that also 
has the advantage of limiting routing 
congestion.

The clocking architecture and con-
figurable logic block (CLB) also con-
tribute to better device utilization in the 
UltraScale devices. Although the CLB 
is still based on that of the 7 Series ar-
chitecture, there is now a single slice 
per CLB (instead of two), integrating 
eight, six-input LUTs and 16 flip-flops. 
The carry chain is consequently 8 bits 
long and a wider output multiplexer is 
available. In addition, Xilinx has also in-
creased the control-set resources (that 
is, the clock, clock-enable and reset 
signals shared by the storage elements 
within a CLB). 

However, it is essentially the im-
provements to the DSP48 slice and 
Block RAM that have the most impact 
on radio design architectures. Let’s look 
at them more closely. 

BENEFITS OF THE ULTRASCALE 
DSP48 SLICE ARCHITECTURE 
Figure 1 shows a view of the UltraScale 
DSP48 slice (DSP48E2). The top diagram 
(labeled “a”) describes the detailed archi-
tecture, while the bottom part (“b”) high-
lights the functional enhancements com-
pared with the 7 Series slice (DSP48E1). 

source mix is better suited for radio ap-
plications, which results in a more op-
timal usage of the logic resources. The 
DSP-to-logic ratio, especially, is much 
more closely in line with what is typical-
ly required for DFE designs. More pre-
cisely, UltraScale Kintex devices have 
eight to 8.5 DSP48 slices per 1K lookup 
tables (LUTs), while this number is only 
around six on 7 Series devices. 

Xilinx has also significantly increased 
the clocking and routing resources in 
the UltraScale architecture. This in-
crease enables higher device utilization, 
especially for high-clock-rate designs. 
In effect, routing congestion is reduced, 
and designers can achieve better design 
packing and LUT utilization. In partic-
ular, LUT/SRL compression is more 
efficient. This is an interesting fabric 
feature that users can exploit to better 
pack their designs and consequently op-
timize resource utilization as well as dy-
namic power consumption, which can 
be reduced by a factor of up to 1.7 for 
the related logic. The principles of LUT/
SRL compression involve using the two 
outputs of the LUT6 to pack two dif-
ferent functions in a single LUT. In this 
way, you can pack two LUT5s, imple-
menting a logic function or a memory, 
into a single LUT6, provided they share 
the same inputs or read/write address 
for a memory. Similarly, you can pack 
two SRL16s into a single LUT6.

This feature is quite useful for 
digital radio designs, which usually 
integrate many small memories shar-
ing the same address—for instance, 
ROMs storing filter coefficients—and 
a lot of short delay lines (less than 16 
cycles) to time-align different signal 

The serdes can support a throughput 
of 12.5 Gbps on slowest-speed-grade 

devices, enabling the maximum speed of 
JESD204B interfacing.
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 The Xilinx user guide UG579 offers 
a comprehensive description of the 
DSP48E2 capabilities [7]. The major 
enhancements in the UltraScale ar-
chitecture are:

•  Xilinx has increased the multiplier 
width from 25x18 to 27x18, and the 
pre-adder width rises accordingly 
to 27 bits.

•  You can select the pre-adder input 
to be either A or B, and some multi-
plexing logic has been integrated on 

GREG/C Bypass/Mask

BCOUT* ACOUT*

ALUMODE

INMODE

CARRYIN

OPMODE

CARRYINSEL

BCIN* ACIN*

* These signals are dedicated routing paths internal to the DSP48E2 column. They are not accessible via general-purpose routing resources.

MULTSIGNIN*

CARRYCASCIN*

MULTSIGNOUT* PCOUT*

CARRYCASCOUT*

Dual B Register

Dual A, D,
and Pre-adder

MULT
27 x 18

A:B

M

C

PCIN*

17-Bit Shift

17-Bit Shift

P

Figure 1 – Architecture of the UltraScale DSP48 slice

output, which allows feeding D±A or 
D±B on any of the multiplier inputs 
(27-bit or the 18-bit input). 

•   The pre-adder output can feed both 
multiplier inputs (with appropriate 
MSB truncation on the 18-bit input), 
hence allowing the computation of 
(D±A)2 or (D±B)2 for up to 18-bit data.

•   A fourth operand is added to the 
arithmetic logic unit (ALU), through 
the extra W-mux multiplexer, which 
can take as input either C, P or a 

constant value (defined at FPGA 
configuration). This makes it pos-
sible to perform a three-input op-
eration when the multiplier is used, 
such as A*B+C+P or A*B+P+PCIN. 
It is worth noting that the W-mux 
output can only be added within the 
ALU (subtraction is not permitted).

•  Xilinx has integrated additional log-
ic to perform a wide XOR between 
the 96 bits of any two of the X, Y or 
Z multiplexer outputs. Four different 
modes are actually available, offer-
ing 1x 96-bit, 2x 48-bit, 4x 24-bit or 8x 
12-bit XOR operation.

 Increasing the multiplier size from 
25x18 to 27x18 has minimal impact 
on the silicon area of the DSP48 slice, 
but significantly improves the support 
for floating-point arithmetic. First, it is 
worth pointing out that the DSP48E2 
can in effect support up to 28x18-bit or 
27x19-bit signed multiplication. This is 
achieved by using the C input to pro-
cess the additional bit, as described in 
Figure 2, which shows the multiplica-
tion of a 28-bit operand, X, with an 18-
bit operand, Y. 

The 45 most significant bits (MSBs) 
of the 46-bit output are computed as:

 
Z[45:1] = X[27:1]*Y[17:0] + X[0]*Y[17:1]

 
The 27 MSBs of X and 18 bits of Y are 

directly fed into the DSP48E2 multipli-
er inputs, while X[0]*Y[17:1] is derived 
from an external 17-bit AND operator 
and sent to the C input after a single 
pipelining stage to match the DSP48E2 
latency. The AND operator can actually 
be omitted by directly feeding Y[17:1] 
into a register with the reset pin con-
trolled by X[0]. Similarly, an external 
1-bit AND operator and a three-clock-
cycle delay for latency balancing are 
used to compute the LSB of Z, Z[0]. 

You can therefore implement a 
28x18-bit multiplier with a single 
DSP48E2 slice and 18 LUT/flip-flop 
pairs. The same applies for a 27x19-bit 
multiplier, using 27 additional LUT/flip-
flop pairs. In both cases, convergent 

A/B Mux on
Pre-adder input

Squaring Mux Wide XOR

Increased
Multiplier Width

W-Mux

B

A

D

C

27 x 18
Multiplier

Pre-adder

Round Cst
Pattern Detector

48-Bit Accumulator/Logic Unit

+/–

(b) DSP48E2 high-level functional view

 (a) Detailed DSP48E2 architecture
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has been recently added to the IEEE 
floating-point standard [8]. Basically, it 
consists of building the floating-point 
operation A*B+C, without explicitly 
rounding, normalizing and de-normal-
izing the data between the multiplier 
and the adder. These functions are in-
deed very costly when using traditional 
floating-point arithmetic and account 
for the greatest part of the latency. This 
concept may be generalized to build 
sum-of-products operators, which are 
common in linear algebra (matrix prod-
uct, Cholesky decomposition). Con-
sequently, such an approach is quite 
efficient for applications where cost or 
latency are critical, while still requiring 
the accuracy and dynamic range of the 
floating-point representation. This is 
the case in radio DFE applications for 
which the digital predistortion func-
tionality usually requires some hard-
ware-acceleration support to improve 
the update rate of the nonlinear filter 
coefficients. You can then build one or 
more floating-point MAC engines in the 
FPGA fabric to assist the coefficient-es-
timation algorithm running in software 
(e.g. on one of the ARM® Cortex™-A9 
cores of the Zynq SoC).

For such arithmetic structures, it 
has been shown that a slight increase 
of the mantissa width from 23 to 26 
bits can provide even better accuracy 

rounding of the result can still be sup-
ported through the W-mux. 

A double-precision floating-point mul-
tiplication involves the integer product 
of the 53-bit unsigned mantissas of both 
operators. Although a 52-bit value (m) 
is stored in the double-precision float-
ing-point representation, it describes the 
fractional part of the unsigned mantissa, 
and it is actually the normalized 1+m val-
ues, which need to be multiplied togeth-
er; hence the additional bit required by 
the multiplication. Taking into account 
the fact that the MSBs of both 53-bit op-
erands are equal to 1, and appropriately 
splitting the multiplication to optimally 
exploit the DSP48E2 26x17-bit unsigned 
multiplier and its improved capabilities 
(e.g., the true three-input 48-bit adder 
enabled by the W-mux), it can be shown 
that the 53x53-bit unsigned multiplica-
tion can be built with only six DSP48E2 
slices and a minimal amount of external 
logic. It is out of the scope of this arti-
cle to provide all the details of such an 
implementation, but a similar approach 
would require 10 DSP48E1 slices on the 
previous-generation 7 Series devices; 
hence there is a 40 percent gain brought 
by the UltraScale architecture. 

The 27x18 multiplier of the DSP48E2 
is also very useful for applications 
based on fused data paths. The con-
cept of a fused multiply-add operator 

compared with a true single-precision 
floating-point implementation, but with 
reduced latency and footprint. The 
UltraScale architecture is again well 
adapted for this purpose, since it takes 
only two DSP48 slices to build a sin-
gle-precision fused multiplier, whereas 
three are required on 7 Series devices 
with additional fabric logic.     

The pre-adder, integrated within the 
DSP48 slice in front of the multiplier, 
provides an efficient way to implement 
symmetric filters that are commonly 
used in DFE designs to realize the dig-
ital upconverter (DUC) and downcon-
verter (DDC) functionality. For an N-tap 
symmetric filter, the output samples are 
computed as follows:

where x(n) represents the input signal 
and h(n) the filter impulse response, 
with h(n)= h(N−1− n). 

Pairs of input samples are therefore 
fed into the pre-adder and the output is 
further multiplied with the appropriate 
filter coefficient. On the 7 Series archi-
tecture, the pre-adder must use the 30-
bit input (A) of the DSP48E1, together 
with the 25-bit input (D), and its output 
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Figure 2 – A 28x18-bit signed multiplication with convergent rounding capability of the output
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is connected to the 25-bit input of the 
multiplier, while the B input is routed to 
the 18-bit multiplier input. Consequently, 
when building symmetric filters, the co-
efficients cannot be quantized on more 
than 18 bits, which limits the stopband 
attenuation to around 85 to 90 dB. This 
may be an issue for next-generation 5G 
radio systems, which are likely to oper-
ate in environments with a very high in-
terference level, and may therefore need 
filters with greater attenuation.

The UltraScale architecture over-
comes this problem because the pre-ad-
der input can be selected as either A or 
B, and some multiplexing logic has been 
integrated on the output to allow feed-
ing D±A or D±B to any of the multiplier 
inputs (27-bit or the 18-bit input). As a 
consequence, symmetric filters with up 
to 27-bit coefficients can be supported.

Another feature Xilinx has added to 
the DSP48E2 slice is the capability to 
connect the pre-adder output to both 
inputs of the multiplier (with appropri-
ate MSB truncation on the 18-bit input). 
This makes it possible to perform op-
erations such as (D±A)2 or (D±B)2 for 
up to 18-bit data, which can be used 
efficiently when evaluating sums of 
squared-error terms. Such operations 
are quite common in optimization prob-
lems, for example when implementing 
least-square solutions to derive the co-
efficients of the equalizer in a modem, 
or to time-align two signals.

It is indisputably the addition of 
a fourth input operand to the ALU, 
through the extra W-mux multiplexer, 
which brings the most benefit for radio 

applications. This operand can typical-
ly save 10 percent to 20 percent of the 
DSP48 requirements for such designs 
compared with the same implementa-
tion on a 7 Series device.

The W-mux output can only be add-
ed within the ALU (subtraction is not 
permitted), and can be set dynamically 
as the content of either the C or P reg-
ister or as a constant value, defined at 
FPGA configuration (e.g. the constant to 
be added for convergent or symmetric 
rounding of the DSP48 output), or sim-
ply forced to 0. This allows performing 
a true three-input operation when the 
multiplier is used, such as A*B+C+P, 
A*B+C+PCIN, A*B+P+PCIN, something 
that is not possible with the 7 Series ar-
chitecture. Indeed, the multiplier stage 
generates the last two partial-product 
outputs, which are then added within 
the ALU to complete the operation (see 
Figure 1). Therefore, when enabled, the 
multiplier uses two inputs of the ALU, 
and a three-input operation cannot be 
performed on 7 Series devices.

Two of the ost significant examples 
that benefit from this additional ALU in-
put are semi-parallel filters and complex 
multiply-accumulate (MAC) operators. 
Let’s take a closer look at both of them.

OF FILTERS AND MACS 
Linear filters are the most common pro-
cessing units of any DFE application. 
When integrating such functionality on 
Xilinx FPGAs, it is recommended [6], 
as far as possible, to implement multi-
channel filters for which the composite 
sampling rate (defined as the product of 

the number of channels by the common 
signal-sampling frequency of each chan-
nel) is equal to the clock rate at which 
the design is running. In a so-called 
parallel architecture, each DSP48 slice 
supports a single filter coefficient per 
data channel, which greatly simplifies 
the control logic and hence minimizes 
the design resource utilization.
 However, with higher clock-rate ca-
pabilities (for example, more than 500 
MHz on lowest-speed-grade UltraScale 
devices), and for filters running at a rel-
atively low sampling rate, it is often the 
case that the clock rate can be selected 
as a multiple of the composite sampling 
rate. It’s desirable to increase the clock 
rate as much as possible to further re-
duce the design footprint, as well as the 
power consumption. In such situations, a 
semi-parallel architecture is built where 
each DSP48 processes K coefficients per 
channel, where K is the ratio between the 
clock rate and the composite sampling 
rate. The most efficient implementation 
then consists of splitting the filter into its 
K phases, each DSP48 processing a spe-
cific coefficient of these K phases. 

At each clock cycle, the successive 
phases of the filter output are comput-
ed and need to be accumulated together 
to form an output sample (once every 
K cycle). Consequently, an additional 
accumulator is required at the filter out-
put compared with a parallel implemen-
tation. This full-precision accumulator 
works on a large data width, equal to 
b

S
+b

C
+b

F 
, where b

S
 and b

C
 are respec-

tively the bit widths of the data samples 
and coefficients, and b

F
=Log

2
N is the 

The addition of a fourth input operand 
to the ALU through the extra W-mux 
multiplexer brings the most benefit

for radio applications.
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filter bit growth, N being the total num-
ber of coefficients. Normal practice is 
therefore to implement the accumulator 
within a DSP48 slice to ensure support 
for the highest clock rate while minimiz-
ing footprint and power.

It should be noted that semi-par-
allel architectures can be derived for 
any type of filter: single-rate, integer 
or fractional-rate interpolation and 

decimation. Figure 3 shows a simpli-
fied block diagram for both 7 Series 
and UltraScale implementations. It 
clearly highlights the advantage of the 
UltraScale solution, since the phase ac-
cumulator is absorbed by the last DSP48 
slice thanks to the W-mux capability. 

Let’s now consider the implemen-
tation of a fully parallel complex MAC 
operator generating one output every 

clock cycle. It is well known that you 
can rewrite the equation of a complex 
product, P

I
 + j.P

Q
 = (A

I
 + j.A

Q
).(B

I
 + j.B

Q
), 

so as to use only three real multiplica-
tions, according to:

• P
I
 = P

1
 + A

I
.(B

I
 - B

Q
)

• P
Q
 = P

1
 + A

Q
.(B

I
 + B

Q
)

where P
1
 = B

Q
.(A

I
 - A

Q
).
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Consequently, by exploiting the built-
in pre-adder, you can implement a com-
plex multiplier with three DSP48s only— 
one to compute P

1
 and the other two to 

handle the P
I
 and P

Q
 outputs. Depending 

on the latency requirements, which also 
dictate the speed performance, some log-
ic needs to be added to balance the de-
lays between the different data paths. To 
get maximal speed support, the DSP48 
must be fully pipelined, which results in 
an overall latency of six cycles for the 
operator. A two-cycle delay line is conse-
quently added on each input to correctly 
align the real and imaginary data paths. 
Those are implemented with four SRL2 
per input bit, which are in effect packed 
into two LUTs by taking advantage of the 
SRL compression capabilities.

The complex MAC is finally complet-
ed by adding an accumulator on each of 
the P

I
 and P

Q
 outputs. Again this accu-

mulator works on large data widths and 
is therefore better integrated within a 
DSP48 slice. The corresponding imple-
mentations for 7 Series and UltraScale 
devices are shown in Figure 4, which 
once again demonstrates the benefit of 
the W-mux integration. The P

I
 and P

Q 

DSP48E2 slices absorb the accumula-
tors, with 40 percent resource savings. 
It is worth mentioning that the latency 
is also reduced, which may be benefi-
cial for some applications.

Using a similar construction, you can 
build a complex filter (one with com-
plex data and coefficients) with three 
real filters, as depicted in Figure 5. The 
real and imaginary parts of the input 
signal are fed into two real filters, with 
coefficients derived respectively as the 
difference and sum of the imaginary and 
real parts of the filter coefficients. The 
third filter processes the sum of the in-
put real and imaginary parts in parallel, 
using the real part of the coefficients.

The outputs of these three filters are 
finally combined to generate the real 
and imaginary components of the out-
put, which can again benefit from the 
W-mux, when parallel filters need to be 
built, which is typically the case for the 
equalizers used in DFE applications. 
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BENEFITS OF THE ULTRASCALE 
MEMORY ARCHITECTURE 
The Block RAMs integrated in Ultra- 
Scale devices are essentially the same as 
in the 7 Series, but the new architecture 
introduces a hardware data-cascading 
scheme, together with a dynamic pow-
er-gating capability. Figure 6 illustrates 
this cascade, showing the data multi-
plexers embedded between every low-
er and upper adjacent Block RAM in a 
column. Larger memories can therefore 
be built in a bottom-up fashion without 
additional use of logic resources.
 The cascade covers each entire col-
umn across the device, but its usage is 
better limited to a single clock region 
(that is, 12 successive BRAMs) to avoid 
clock skew and to maximize timing per-
formance. Full flexibility is also avail-
able to support different implementa-
tions of the cascade feature. In effect, 
you can apply the multiplexer either to 
the Block RAM data input or to the out-
put after or before the optional register.

The cascade opens up the possibili-
ty of building large memories requiring 
more than one BRAM, while simulta-
neously supporting minimal footprint, 
highest clock rate and minimal pow-
er, which is not feasible with 7 Series 
devices. For example, a 16K memory 
storing 16-bit data is better implement-
ed with eight BRAMs (36K) configured 
as 16Kx2-bit on a 7 Series device to 
avoid external data multiplexing, which 
would add logic resources and latency, 
and could impact timing and routing 
congestion. This is unfortunately the 
less-efficient approach from a dynam-
ic-power perspective, since the eight 
Block RAMs are enabled during any 
read or write operation. The optimal 
solution consists of using a 2Kx16-bit 
configuration, since only a single BRAM 
is then enabled, which divides the dy-
namic power by a factor 8. This is pre-
cisely what the cascade feature enables 
on the UltraScale devices, together with 
the dynamic power-gating capability.

Another direct application of the 
Block RAM cascade is related to the 
implementation of I/Q data-switching 

Figure 5 – Implementation architecture of a complex filter
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Figure 6 – BRAM cascade on UltraScale devices
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functionality, commonly integrated with 
the baseband CPRI interfacing of DFE 
systems. Figure 7 shows the high-level 
switching architecture, which essential-
ly consists of an NxM memory array. 
The successive data on the N ingress 
streams are written into the appropriate 
Block RAM in a line according to their 
output destination, and the M egress 
streams are read out from the appro-
priate Block RAM in a column. Conse-
quently, each column can effectively be 
implemented with the BRAM cascade.

For more information on the 20-nm 
UltraScale family, visit http://www.xil-
inx.com/products/silicon-devices/fpga/
index.htm. 
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Angle Measurement 
Made Easy with  
Xilinx FPGAs and a 
Resolver-to-Digital 
Converter
When properly paired with an FPGA,  
angle transducers can help engineers  

create ever-more-remarkable machinery. 
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E
ver since humans invented the wheel, we have 
wanted to know, with varying degrees of accu-
racy, how to make wheels turn more efficient-
ly. Over the course of the last few centuries, 
scientists and engineers have studied and de-

vised numerous ways to accomplish this goal, as the basic 
principles of the wheel-and-axle system have been applied 
to virtually every mechanical system, from cars to stereo 
knobs to cogs in all forms of machinery, to the humble 
wheelbarrow [1].
 Over these many eras, it turns out the most essential el-
ement in making a wheel turn efficiently is not the wheel 
itself (why reinvent it?) but the shaft angle of the wheel. 
And the most effective way to measure and optimize a shaft 
angle today is through the use of angle transducers. There 
are many types of angle transducers that help optimize 
wheel efficiency through axle monitoring and refinements, 
but by applying FPGAs to the task you can achieve remark-
able results and improve axle/wheel efficiencies in a broad 
number of applications.
 Before we get into the details of how engineers are doing 
this optimally with Xilinx® FPGAs, let’s briefly review some 
basic principles of angle transducers. Today there are two 
widely used varieties: encoders and resolvers.

TYPES OF ENCODERS AND RESOLVERS  
Encoders fall into two basic categories: incremental and 
absolute. Incremental encoders monitor two positions 
on an axle and create an A or B pulse each time the axle 
passes those positions. A separate external electric count-
er then interprets those pulses for speed and rotational 
direction. Incremental counters are useful in a number of 
applications, but they do have some disadvantages. For 
example, when the axle is powered off, an incremental 
encoder must first calibrate itself by returning to a desig-
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nated calibration point before beginning operation. Incre-
mental counters are also susceptible to electrical interfer-
ence, which can result in inaccuracies in pulses they send 
to the system and thus in rotation counts. Moreover, many 
incremental encoders are photoelectric devices, which 
precludes their use in radiation-hazardous areas, if that is 
a concern for your targeted application.
 Absolute encoders are sensor systems that monitor 
the rotation count and direction of an axle. In an abso-
lute-encoder-based system, users typically attach a wheel 
to an axle that has an electrical contact or photoelectric 
reference. When the axle is in operation, the absolute-en-
coder-based system records the rotation and direction of 
the operation and generates a parallel digital output that is 
easily translated into code, most commonly binary or Gray 
code. Absolute encoders are useful in that they need to be 
calibrated only once—typically in the factory—and not be-
fore every use. Moreover, they are typically more reliable 
than other encoders. That said, absolute encoders are typ-
ically expensive, and they are not great with parallel data 
transmission, especially if the encoder is located far away 
from the electronic system measuring its readings.

A resolver, for its part, is a rotary transformer—an ana-

log device whose output voltage is uniquely related to the input 
shaft angle it is monitoring. It is an absolute-position transduc-
er with 0o to 360o of rotation that connects directly to the axle 
and reports speed and positioning. Resolvers have a number 
of advantages over encoders. They are robust devices that can 
withstand harsh environments marked by dust, oil, temperature 
extremes, shock and radiation. Being a transformer, a resolver 
provides signal isolation and a natural common-mode rejection 
of electrical interference. In addition to these features, resolvers 
require only four wires for the angular data transmission, which 
suits them for everything from heavy manufacturing to minia-
ture systems to those used in the aerospace industry.

A further refinement is the brushless resolver, which 
does not require slip-ring connections to the rotor. This 
type of resolver is therefore even more reliable and has a 
longer life cycle. 

Resolvers use two methods to obtain output voltages 
related to the shaft angle. In the first method, the rotor 
winding, as shown in Figure 1, is excited by an alternating 
signal and the output is taken from the two stator wind-
ings. As the stator windings are mechanically positioned at 
right angles, the output signal amplitude is related by the 
trigonometric sine and cosine of the shaft angle. Both the 
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V sin ωt cos θ V sin ωt cos θ sin ψ
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Figure 2 – Resolver-to-digital converter (RDC) block diagram
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sine and cosine signals have the same phase as the original 
excitation signal; only their amplitudes are modulated by 
sine and cosine as the shaft rotates. 

In the second method, a stator winding is excited with 
the alternating signals, which are in phase quadrature to 
each other. Then a voltage induces in the rotor winding. 
The winding’s amplitude and frequency are fixed, but its 
phase shift varies with the shaft angle.

The resolver can be positioned where the angle needs 
to be measured [2]. The electronics, generally a resolv-
er-to-digital converter (RDC), can be positioned where the 
digital output needs to be measured. Analog output from 
the resolver, which contains the angular position informa-
tion of the shaft, is then transformed in digital form using 
the RDC. 

FUNCTIONALITY OF THE TYPICAL RDC 
In general, the two outputs of a resolver are applied to the 
sine and cosine multiplier of the RDC [3]. These multipli-
ers incorporate sine and cosine lookup tables and func-
tion as multiplying digital-to-analog converters. Figure 2 
shows their functionality.
 Let us assume, in the beginning, that the current state of 
the up/down counter is a digital number representing a trial 

angle, ψ. The converter seeks to adjust the digital angle, ψ, 
continuously to become equal to and track θ, the analog an-
gle being measured.
 The stator output voltage of the resolver is:
 
V1= V sinωt  sinθ                                                                                Eq. 1                 
V2= V sinωt  cosθ                                                                              Eq. 2
 
where θ is the angle of the resolver’s rotor. The digital angle ψ 
is applied to the cosine multiplier and its cosine is multiplied 
by V1 to produce the term:
 
V sinωt  sinθ cosψ.                                                                            Eq. 3
  
 The digital angle ψ is also applied to the sine multiplier 
and multiplied by V2 to produce the term:
 
V sinωt  cosθ sinψ.                                                                            Eq. 4
  
 These two signals are subtracted from each other by the 
error amplifier to yield an ac error signal of the form:
 
(V sinωt  sinθcosψ  – V sinωt  cosθ sinψ)                               Eq. 5
  
V sinωt (sinθ cosψ-  cosθ sinψ)                                                   Eq. 6
  
 From trigonometric identity, this reduces to:
  
V sinωt [sin (θ -ψ)]                                                                             Eq. 7
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 The detector synchronously demodulates this ac error 
signal, using the resolver’s rotor voltage as a reference. 
This results in a dc error signal proportional to sin (θ -ψ).

The dc error signal feeds an integrator, the output of which 
drives a voltage-controlled oscillator. The VCO, in turn, causes 
the up/down counter to count in the proper direction to cause:
 

        sin (θ -ψ)→0.                                                                     Eq. 8
 

When this result is achieved,
 

                   θ -ψ→0,                                                                   Eq. 9
 

and therefore
 

                     θ = ψ                                                                    Eq. 10
 
in one count. Hence, the counter’s digital output, ψ, represents 
the angle θ. The latches make it possible to transfer this data 
externally without interrupting the loop’s tracking.
 This circuit is equivalent to a Type 2 servo loop, as it has 
in effect two integrators. One is the counter, which accu-
mulates pulses; the other is the integrator at the output of 
the detector. In a Type 2 servo loop with a constant-rota-
tional-velocity input, the output digital word continuously 
follows, or tracks, the input, without needing externally de-
rived conversion.

TYPICAL EXAMPLE OF AN RDC: THE SD-14621 
The SD-14621 is a small, low-cost, RDC from Data Device 
Corp. (DDC). It has two channels with programmable res-
olution control. Resolution programming allows selection 
of 10-, 12-, 14- or 16-bit modes [4]. This feature allows low 
resolution for fast tracking or higher resolution for higher 
accuracy. Thanks to its size, cost, accuracy and versatili-
ty, this converter is suitable for high-performance military, 
commercial and position-control systems.

 A single +5 V is required for device operation. The con-
verter has velocity outputs (VEL A, VEL B) of  a voltage 
range of ±4 V with respect to analog ground, which can be 
used to replace a tachometer. Two built-in test outputs are 
provided for two channels (/BIT A and /BIT B) to indicate 
loss of signal (LOS).
 This converter has three main sections: an input front 
end, an error processor and a digital interface. The front end 
differs for synchro, resolver and direct inputs. An electron-
ic Scott-T is used for synchro inputs, a resolver conditioner 
for resolver inputs and a sine-and-cosine voltage follower 
for direct inputs. These amplifiers feed the high-accuracy 
control transformer (CT). The other input of the CT is a 16-
bit digital angle ψ and the output is an analog error angle, 
or a difference angle, between the two inputs. The CT per-
forms the ratiometric trigonometric computation of SINθ 
COSψ -  COSθ SINψ =  Sin(θ-ψ) using amplifiers, switches, 
logic and capacitors in precision ratios.

Compared with a conventional precision resistor, these 
capacitors are used in precision ratios to get enhanced ac-
curacy. Further, these capacitors (which are used with an 
op amp as a computing element) sample at high rates to 
eliminate drift and op-amp offsets.  

The DC error processing is integrated, yielding a velocity 
voltage that drives a voltage-controlled oscillator. This VCO 
is an incremental integrator when it is combined with the 
velocity integrator: a Type 2 servo feedback loop.

REFERENCE OSCILLATOR  
The power oscillator in our design, also from DDC, is the 
OSC-15802. This device is suitable for RDC, synchro, LVDT, 
RVDT and inductosyn applications [5]. The frequency and 
amplitude outputs are programmable with capacitors and re-
sistors, respectively. The output frequency range is 400 Hz to 
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Figure 4 – Block diagram of the OSC-15802 reference oscillator
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DETAILS OF THE DEVICE DRIVER 
In this case, we used an external input clock of 20 MHz for 
the FPGA. This FPGA has a hard PowerPC® 440 core that is 
running at a 200-MHz frequency. The timing diagram of the 
RDC is shown in Figure 6 and Figure 7.
 In accordance with the timing diagram of the RDC, we 
developed, tested and confirmed correct functionality 
with the actual hardware [4]. The actual code of the de-
vice driver is included in the separate XBD file. As per the 
timing diagram, we generated required delays using for 
loops. When processing is running at 200 MHz, each count 
corresponds to a delay of 5 nanoseconds.  

The device driver has three sections of code: RDC ini-
tialization; generation of a control signal and reading from 
channel A of the RDC; and generation of a control signal 
and reading from channel B. RDC initialization is the point 
at which the direction of the signal and default values are 

10 kHz, with an output voltage of 7 Vrms. Figure 4 shows a 
block diagram of the device.
 The oscillator output, which is given to the resolver and 
the RDC, works as a reference signal.

VIRTEX-5 FX30T FPGA AND RDC INTERFACE 
For our design, we used a Xilinx Virtex®-5 FX30T FPGA [6]. 
The I/O voltage of the FPGA is 3.3 V, while the RDC’s volt-
age is 5 V. We used voltage transceivers to achieve voltage 
compatibility between the two devices. Internal connec-
tions with the FPGA are established through the GPIO IP 
core provided by Xilinx, as seen in Figure 5.
 For simplicity’s sake, Figure 5 shows just one channel with 
the single resolver interface. You will find the pin details of the 
RDC and corresponding pin locking with the FPGA in the Xil-
inx Board Description (XBD) file  that accompanies this article. 
The details are listed in Section 1 of that document.
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Figure 5 – RDC interface with the Virtex-5 FPGA (single channel)

 The I/O voltage of the FPGA is 3.3 V, while the 
RDC’s voltage is 5 V. We used voltage 

transceivers to achieve voltage compatibility 
between the two devices.
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set. For example, with the following statement, the direc-
tion is set as “out” from the FPGA to the RDC. 

XGpio_WriteReg(XPAR_RESOLUTION_CNTRL_CH_A_
 BASEADDR,XGPIO_TRI_OFFSET,0x000);  

With the next statement, the 16-bit resolution is set by 
writing “0x3” (that is, pulling high): 

XGpio_WriteReg(XPAR_RESOLUTION_CNTRL_CH_A_
 BASEADDR,XGPIO_DATA_OFFSET,0x03);  

Figure 8 shows a snapshot of the coding. Note: for sim-
plification, we have included code for only one channel.

 As we have seen, angle transducers help engineers cre-
ate a better wheel and thus a plethora of more efficient 
machinery. Resolvers are an especially useful type of an-
gle transducer, and when properly paired and controlled 
with an FPGA, can help engineers create even more remark-
able machinery. 
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seXGpio_WriteReg(XPAR_INHIBIT_CH_A_
BASEADDR,XGPIO_DATA_OFFSET,0x01); 
for(i=0;i<=5;i++); //gives delay of 25 ns 
       XGpio_WriteReg(XPAR_ENABLE_LSB_
CH_A_BIT_BASEADDR,XGPIO_DATA_OFFSET,0x01);  

for(i=0;i<=5;i++);
XGpio_WriteReg(XPAR_INHIBIT_CH_A_BASEAD-
DR,XGPIO_DATA_OFFSET,0x00);   
for(i=0;i<=2;i++);
XGpio_WriteReg(XPAR_ENABLE_LSB_CH_A_BIT_
BASEADDR,XGPIO_DATA_OFFSET,0x00);  

for(i=0;i<=2;i++);
lsb_val=XGpio_ReadReg(XPAR_RDC_DATA_15_
TO_0_PINS_BASEADDR,XGPIO_DATA_OFFSET);  

XGpio_WriteReg(XPAR_INHIBIT_CH_A_BASEAD-
DR,XGPIO_DATA_OFFSET,0x01);    
      for(i=0;i<=5;i++);
XGpio_WriteReg(XPAR_ENABLE_LSB_CH_A_BIT_
BASEADDR,XGPIO_DATA_OFFSET,0x01);  
for(i=0;i<=25;i++);  

XGpio_WriteReg(XPAR_INHIBIT_CH_A_BASEAD-
DR,XGPIO_DATA_OFFSET,0x01);    
for(i=0;i<=5;i++);
XGpio_WriteReg(XPAR_ENABLE_MSB_CH_A_BIT_
BASEADDR,XGPIO_DATA_OFFSET,0x01);
for(i=0;i<=5;i++);

XGpio_WriteReg(XPAR_INHIBIT_CH_A_BASEAD-
DR,XGPIO_DATA_OFFSET,0x00);    
      for(i=0;i<=2;i++);
XGpio_WriteReg(XPAR_ENABLE_MSB_CH_A_BIT_
BASEADDR,XGPIO_DATA_OFFSET,0x00);  
for(i=0;i<=2;i++);
msb_val=XGpio_ReadReg(XPAR_RDC_DATA_15_
TO_0_PINS_BASEADDR,XGPIO_DATA_OFFSET);

 lsb_val=lsb_val & 0x00ff;

 msb_val=msb_val & 0xff00;

 rdccount_cha = msb_val | lsb_val;

XGpio_WriteReg(XPAR_INHIBIT_CH_A_BA-
SEADDR,XGPIO_DATA_OFFSET,0X01); 
for(i=0;i<=5;i++);

XGpio_WriteReg(XPAR_ENABLE_MSB_CH_A_
BIT_BASEADDR,XGPIO_DATA_OFFSET,0x01); 
for(i=0;i<=20;i++);
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Motor Drives  
Migrate to Zynq  
SoC with Help  
from MATLAB
by Tom Hill  
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tom.hill@xilinx.com 

Industrial designers can 
use rapid prototyping and 
model-based design to 
move their motor control 
algorithms to the Zynq 

SoC environment. 
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S
ince the 1990s, developers of motor 
drives have been using a multichip ar-
chitecture to implement their motor 
control and processing requirements. 

In this architecture, a discrete digital signal-pro-
cessing (DSP) chip executes motor control algo-
rithms, an FPGA implements high-speed I/O and 
networking protocols, and a discrete processor 
handles executive control. With the advent of 
the Xilinx® Zynq®-7000 All Programmable SoC, 
however, designers have the means to consoli-
date these functions into a single device while 
integrating additional processing tasks. The re-
duction in parts count and complexity makes it 
possible to lower system cost while improving 
performance and reliability. 

But how can drive developers evolve their 
established design practices to leverage the 
Zynq SoC?
 Industrial designers have long embraced 
model-based design for the development of 
custom motor algorithms on DSP chips through 
the use of simulation and C-code generation. 
Now, a new workflow from MathWorks—de-
veloped in conjunction with Xilinx—extends 
model-based design to the processing system 
and programmable logic available with the 
Zynq-7000 All Programmable SoC.

ZYNQ SOCS FOR MOTOR CONTROL  
Today’s advanced motor control systems are a 
combination of control algorithms and industri-
al networks, including EtherCAT, Profinet, Pow-
erlink and Sercos III, that draw processing band-
width from the computing resources. Moreover, 
other requirements are converging into the con-
trol system including motion-control layers, PLC 
layers, diagnostic layers and user interfaces for 
commission and maintenance or remote moni-
toring. These requirements translate into logical 
and physical partitions with elements that fit 
naturally into the processing systems while oth-
er elements best fit into the hardware-assisted 
offloading and acceleration.

The hardware platform you select should 
provide a robust and scalable system. Xilinx’s 
Zynq SoCs fulfill these requirements by sup-
plying a high-performance processing system 
to address the networking, motion, soft-PLC, 
diagnostic and remote-maintenance functions 
combined with programmable logic to accel-
erate performance-critical functions in hard-
ware. On the processing side, the Zynq SoC 
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combines a dual-core ARM® Cortex™-A9 
processing system with a NEON copro-
cessor and floating-point extensions to 
accelerate software execution. On the 
programmable logic side, the device has 
up to 444,000 logic cells and 2,200 DSP48 
slices that supply massive processing 
bandwidth. Five high-throughput AMBA®-
4 AXI high-speed interconnects tightly 
couple the programmable logic to the pro-
cessing system with the equivalent of more 
than 3,000 pins of effective bandwidth.

Table 1 lists the processing perfor-
mance that Zynq SoC devices can achieve.

PLANT AND MOTOR MODELING 
USING SIMULINK AND THE 
CONTROL SYSTEMS TOOLBOX  
Modern control algorithms have sys-
tem times and system variables that 
span several orders of magnitude, mak-

ing hardware/software partitioning a 
daunting, time-consuming and iterative 
task. Figure 2 depicts a typical electri-
cal drive. The power source is normally 
50 to 60 Hz and is rectified to achieve a 

Figure 1 – MathWorks’ workflow targeting  
the Zynq SoC, using C and HDL code generation

Table 1 – Processing performance of the Zynq SoC

Elements Performance (up to)
Processors (each) 1 GHz
Processors (aggregate) 5,000 DMIPs
DSP (each) 741 MHz
DSP (aggregate) 2,662 GMACs
Transceivers (each) 12.5 Gbps
Transceivers (aggregate) 200 Gbps
Software acceleration 10x

continuous voltage (DC). This DC volt-
age is then converted into a variable 
frequency that controls the power stage 
that feeds the motor terminals. The con-
troller also must read the motor’s basic 
variables including current and voltag-
es. It likewise must read or establish the 
shaft position including its speed and 
handling commands originating from 
the communication network or super-
vising controller.

Simulink® provides a block-diagram 
environment for multidomain system 
simulation and model-based design 
that is well suited to simulating sys-
tems that include control algorithms 
and plant models. MathWorks prod-
ucts such as the Control Systems Tool-
box provide a variety of “apps” based 
on widely used methods of systemat-
ically analyzing, designing and tuning 
control systems modeled in Simulink. 
Performing system modeling in Sim-
ulink can accelerate development of 
motor control systems while reducing 
risk in the following ways:

•   Reduces risk of damage – Simula-
tion allows thorough examination of 
new control system algorithms be-
fore they are tested on production 
hardware, where there are risks of 
damaging drive electronics, motors 
and other system components. 

•   Accelerates system integration 
– Support staff must integrate new 
control system algorithms into the 
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production system, meaning that de-
ploying new controllers can consume 
their limited time and can make the 
deployment a protracted process. 

•   Reduces dependency on equip-
ment availability – The production 
environment itself may not be avail-
able, such as in cases where custom 
drive electronics or electric motors 
are under development or are not lo-
cated where control system designers 
can access them. 

Given these factors, simulation pro-
vides an excellent alternative to testing 
on production hardware. Simulation 
environments such as Simulink provide 
a framework for creating plant models 
from preexisting libraries of building 
blocks of electromechanical components 
for the evaluation of new control system 
architectures against plant models.

Risk to the schedule is further reduced 
by linking the system model to a rap-
id-prototyping environment as well as the 
final production system. The rapid-proto-
typing flow enables algorithm developers 
to prototype without having to depend 
on hardware designers. Instead they use 
a platform-specific support package in a 
highly automated process that deploys 
the hardware and software components 
of the system to a design template that 
can be compiled to a specific hardware 
development platform. The hardware 
and software design teams can reuse 
these same hardware and software com-
ponents in the final production systems 
without modification to accelerate devel-
opment and reduce errors.

RAPID PROTOTYPING USING THE 
AVNET INTELLIGENT DRIVES KIT  
Designers can pair the Avnet Zynq-7000 
AP SoC / Analog Devices Intelligent 
Drives Kit with Simulink and the Zynq 
SoC workflow for a complete rapid-pro-
totyping system for motor control appli-
cations. This kit combines the Zynq SoC 
with the latest generation of Analog De-
vices’ high-precision data converters and 
digital isolation. The kit enables high-per-
formance motor control and dual Gigabit 

Ethernet industrial networking connec-
tivity (http://www.xilinx.com/products/
boards-and-kits/1-490M1P.htm).

It comes with an Avnet ZedBoard 
7020 baseboard; Analog Devices’ 
AD-FMCMOTCON1-EBZ module, which 
is capable of driving brushless DC and 
stepper motors with a 24-volt external 
power supply (included with the kit); 
and a 24-V BLDC motor rated for 4,000 
RPM and equipped with Hall-effect sen-
sors and a 1,250-CPR indexed encoder. 
Also included are a Zynq SoC reference 
design of field-oriented control and An-
alog Devices’ Ubuntu Linux framework 
including drivers, application software 
and source code.

EXAMPLE: TRAPEZOIDAL  
MOTOR CONTROL  
Let’s apply this workflow to the trape-
zoidal motor control system in Figure 
1 using simulation in Simulink to evalu-
ate a controller with a simulated plant, 
then prototype the controller using the 
Intelligent Drives Kit. As a final step, we 
will validate the Simulink model using 
results from hardware testing. 

In this example, we will use the kit 
to drive an inertial load in the form of 
an aluminum disc, with a basic trape-

Figure 2 – Major time constraints of electrical drive controllers

zoidal controller. The controller’s main 
components are as follows:

•   Hall-effect sensor – detects the 
motor position

•   Velocity estimator – computes rotor 
velocity based on the sensor signal

•   Six-step commutator – computes 
the phase voltages and inverter en-
able signals based on rotor position 
and velocity

•   Pulse-width modulation (PWM) – 
drives the controller outputs out 
through the drive circuitry 

We start by using a behavioral, con-
trol-loop model of the system suited 
to control-loop analysis. First we will 
evaluate the model in simulation by 
subjecting it to a pulse test, command-
ing a rotational rate of 150 radians per 
second for 2 seconds and then returning 
to a stop. Through tuning of the control 
loop’s proportional-integral (PI) control-
ler gains, we can achieve a settling time 
of 1.2 seconds with negligible overshoot 
(control-loop simulation results appear 
as the purple-shaded signal in Figure 3; 
details on this example are available at 
mathworks.com/zidk).

http://www.mathworks.com/zidk
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Figure 3 – Hardware and software simulation models used to validate against hardware results

Figure 4 – C and HDL code generated from partitioned Simulink model 
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With the bitstream loaded into the 
programmable logic and the executable 
running on an ARM core, we can run a 
hardware-in-the-loop test. For this test, 
we use a modified Simulink testbench 
model from which we have removed the 
models for the drive electronics, motor 
and sensors, since we are using hard-
ware-in-the-loop in place of simulated 
plant models. To help us check the out-
come of the test—and compare it with 
our simulation results—we can set up 
the Zynq SoC to store motor shaft veloc-
ity measurements and other data in the 
memory of an ARM core (the black-shad-
ed signal in Figure 3 shows results from 
hardware testing). Doing so enables us 
to upload the results to a MATLAB ses-
sion for processing and visualization at 
the conclusion of the test by applying a 
pulse input in the testbench. In this way, 
we can exactly repeat in hardware the 
test we’ve done in simulation. The re-
sults from prototyping align very closely 
with our simulation results, including 
the discontinuity in the measured motor 
velocity due to the Hall sensor. 

This brief overview illustrates how 
the MathWorks workflow for the Zynq 
SoC enables model-based design for use 
in simulation and prototyping. To con-
tinue on into production, you can im-
port the generated C and HDL code into 
the Vivado® Design Suite, where you 
can integrate them with executive rou-
tines, networking IP and other design 
components required for the complete 
system implementation. 

To download the models shown in 
this article and learn more about how 
to use model-based design with the 
Zynq-7000 All Programmable SoC / An-
alog Devices Intelligent Drives Kit from 
Avnet, visit mathworks.com/zidk. From 
this page, you can also browse a Sim-
ulink model that implements a com-
plete field-oriented control model on a 
Zynq SoC device and view videos show-
ing this example in greater detail. 

For information on how MathWorks 
products support the Xilinx Zynq-7000 
All Programmable SoC family, visit 
mathworks.com/zynq. 

With the control-loop gains set, we 
now can test on a more accurate system 
model for the controller. In contrast to 
the control-loop model, the system mod-
el incorporates more detailed models 
of the drive electronics and, more sig-
nificantly, it includes detailed models 
that specify the implementation of the 
controller and peripherals, including 
timing-accurate models for PWM and 
Hall-effect sensor processing. 

We have partitioned the controller for 
the Zynq SoC, with the velocity control-
ler and velocity estimator running on an 
ARM core at 1 kHz and the commutator, 
Hall sensor and PWM running on the 
Zynq SoC’s programmable logic. 

We can compare simulation results 
for the control-loop and system models 
(system model results appear as the red 
signal in Figure 3). In general we get very 
good agreement between the waveforms, 
except as the motor’s rate approaches 
zero. At such points the coarseness of 
the Hall sensor, with only six index puls-
es per revolution of the motor’s shaft, 
becomes evident. This high-fidelity sys-
tem model runs the 4-second simulation 
in 7 minutes, compared with a run-time 
of only 7 seconds for the lower-fidelity 
control-loop model. For control system 
designers, the takeaway here is that 
these simulation results give us more 
confidence that the control-loop model 
is sufficiently accurate for further eval-
uation of controller alternatives, which 
can be validated before hardware testing 
using the system model. 

Armed with these findings, we are 
prepared to prototype the controller 
on the Intelligent Drives Kit. Through 
the Zynq SoC guided workflow, we can 
generate C and HDL code from Simulink 
models that have been partitioned into 
subsystems targeting an ARM core and 
programmable logic (Figure 4).

With this workflow, we use the HDL 
Coder from MathWorks to generate an 
IP core that will run in the Zynq SoC 
device’s programmable logic to build an 
executable running on an ARM core and 
to establish the interfaces between core 
and executable over the AXI bus. 

http://www.mathworks.com/zynq
http://www.cesys.com
http://www.mathworks.com/zidk
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I
n embedded processing, an interrupt is 
a signal that temporarily halts the pro-
cessor’s current activities. The proces-
sor saves its current state and executes 
an interrupt service routine to address 

the reason for the interrupt. An interrupt can 
come from one of the three following places: 

•  Hardware – An electronic signal connected 
directly to the processor

•  Software – A software instruction loaded by  
the processor 

•  Exception –  An exception generated by the  
processor when an error or exceptional  
event occurs

 Regardless of the source, interrupts can also 
be classified as either maskable or non-mas-
kable. You can safely ignore a maskable inter-
rupt by setting the appropriate bit in an inter-
rupt mask register. But you cannot ignore a 
non-maskable interrupt, because these are the 
types typically used for timers and watchdogs. 
 Interrupts can be either edge triggered or 
level triggered. The Xilinx® Zynq®-7000 All Pro-
grammable SoC supports configuration of the 
interrupt either way, as we will see later.

WHY USE AN INTERRUPT- 
DRIVEN APPROACH? 
Real-time designs often require an inter-
rupt-driven approach simply because many 
systems will have a number of inputs (for ex-
ample keyboards, mice, pushbuttons, sensors 
and the like) that will at times require process-
ing. Inputs from these devices are generally 
asynchronous to the process or task currently 
executing, so you cannot always predict when 
the event will occur. 
 Using interrupts enables the processor to 
continue processing until an event occurs, 
at which time the processor can address the 
event. This interrupt-driven approach also 
enables a faster response time to events than 
a polled approach, in which a program active-
ly samples the status of an external device in 
a synchronous manner.

THE ZYNQ SOC’S INTERRUPT STRUCTURE 
As processors get more advanced, there are a 
number of sources interrupts can come from. 
The Zynq SoC uses a Generic Interrupt Con-

Real-time computing often 
requires interrupts to respond 
quickly to events. It’s not hard 
to design an interrupt-driven 
system once you grasp how 
the interrupt structure of the 

Zynq SoC works. 



X P L A N A N T I O N :  F P G A  1 0 1

 40 Xcell Journal Second Quarter 2014

troller (GIC), as shown in Figure 1, to process interrupts. 
The GIC handles interrupts from the following sources:

•  Software-generated interrupts – There are 16 such inter-
rupts for each processor. They can interrupt one or both  
of the Zynq SoC’s ARM® Cortex™-A9 processor cores.

•  Shared peripheral interrupts – Numbering 60 in total,  
these interrupts can come from the I/O peripherals, or to  
and from the programmable logic (PL) side of the device.  
They  are shared between the Zynq SoC’s two CPUs. 

•  Private peripheral interrupts – The five interrupts in  
this category are private to each CPU—for example  
CPU timer, CPU watchdog timer and dedicated  
PL-to-CPU interrupt.

 The shared peripheral interrupts are very interesting, as 
they are very flexible. They can be routed to either CPU from 
the I/O peripherals (44 interrupts in total) or from the FPGA 
logic (16 interrupts in total). However, it is also possible to 
route interrupts from the I/O peripherals to the programmable 
logic side of the device, as shown in Figure 2.

PROCESSING THE INTERRUPTS ON THE ZYNQ SOC 
When an interrupt occurs within the Zynq SoC, the pro-
cessor will take the following actions:

1.  The interrupt is shown as pending.

2. The processor stops executing the current thread.

3.  The processor saves the state of the thread in the stack  
to allow processing to continue once it has handled  
the interrupt. 

4.  The processor executes the interrupt service routine,  
which defines how the interrupt is to be handled.

5.  The processor resumes operation of the interrupted 
thread after restoring it from the stack. 

 Because interrupts are asynchronous events, it is pos-
sible for multiple interrupts to occur at the same time. To 
address this issue, the processor prioritizes interrupts such 
that it can service the highest-priority interrupt pending first.
 To implement this interrupt structure correctly, we will 
need to write two functions: an interrupt service routine 
to define the actions that will take place when the inter-
rupt occurs, and an interrupt setup to configure the inter-
rupt. The interrupt setup is a reusable routine that allows 
for constructing different interrupts. Generic for all inter-
rupts within a system, the routine will set up and enable 
the interrupts for the general-purpose I/O (GPIO).

USING INTERRUPTS IN SDK   
Interrupts are supported and can be implemented on a 
bare-metal system using the standalone board support 
package (BSP) within the Xilinx Software Development Kit 
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(SDK). The BSP contains a number of functions that greatly 
ease this task of creating an interrupt-driven system. They 
are provided within the following header files:

•  Xparameters.h – This  file contains the processor’s  
address space and the device IDs.

•  Xscugic.h – This file holds the drivers for the configuration 
and use of the GIC. 

•  Xil_exception.h – This file contains exception functions  
for the Cortex-A9.

 To address a hardware peripheral, we need to know the 
address range and the device ID for the devices we wish 
to use—in other words, the GIC, which is provided mostly 
within the BSP header file xparameters. However, the inter-
rupt ID is provided from xparameters_ps.h (there is no need 
to declare this header file within your source code as it is 
included in the xparameters.h file). We can use this interrupt 
labeled “ID” (it’s the GPIO_Interrupt_ID) within our source 
file as shown below:

#define GPIO_DEVICE_ID   XPAR_XGPIOPS_0_DEVICE_ID
#define INTC_DEVICE_ID  XPAR_SCUGIC_SINGLE_DEVICE_ID
#define GPIO_INTERRUPT_ID   XPS_GPIO_INT_ID

 For this simple example, we will be configuring the Zynq 
SoC’s GPIO to generate an interrupt following a button 

push. To set up the interrupt, we will need two static global 
variables and the interrupt ID defined above to make the 
following: 

static XScuGic Intc; // Interrupt Controller Driver
static XGpioPs Gpio; //GPIO Device

 Within the interrupt setup function, we will need to ini-
tialize the Zynq SoC’s exceptions; configure and initialize 
the GIC; and connect the GIC to the interrupt-handling hard-
ware. The Xil_exception.h and Xscugic.h files provide the 
functions we need to accomplish this task. The result is the 
following code: 

//GIC config
XScuGic_Config *IntcConfig; 
Xil_ExceptionInit();

//initialize the GIC
IntcConfig = XScuGic_LookupConfig(INTC_DEVICE_ID);

XScuGic_CfgInitialize(GicInstancePtr, IntcConfig, 
IntcConfig->CpuBaseAddress);

//connect to the hardware
Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_IN-
T,(Xil_ExceptionHandler)XScuGic_InterruptHandler,
 GicInstancePtr);

 When it comes to configuring the GPIO to function as an 
interrupt within the same interrupt configuration routine, 

Figure 2 – These are the interrupts available between the processing system and the programmable logic.
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we can configure either a bank or an individual pin. This task 
can be achieved using functions provided within xgpiops.h, 
for example:

voi�d�XGpioPs_IntrEnable(XGpioPs *InstancePtr, u8 
Bank, u32 Mask);

voi�d�XGpioPs_IntrEnablePin(XGpioPs *InstancePtr, 
int Pin);

 Naturally, you will also need to configure the interrupt 
correctly. For instance, do you wish it to be edge triggered or 
level triggered? If so, which edge and level can be achieved 
using the function?

void�XGpioPs_SetIntrTypePin(XGpioPs *InstancePtr, 
int Pin, u8 IrqType);

where the IrqType is defined by one of the five definitions 
within xgpiops.h. They are:

#defi�ne XGPIOPS_IRQ_TYPE_EDGE_RISING 0 /**<  
Interrupt on Rising edge */

#defi�ne XGPIOPS_IRQ_TYPE_EDGE_FALLING 1 /**<  
Interrupt Falling edge */

#defi�ne XGPIOPS_IRQ_TYPE_EDGE_BOTH 2 /**<  
Interrupt on both edges */

#defi�ne XGPIOPS_IRQ_TYPE_LEVEL_HIGH 3 /**<  
Interrupt on high level */

#defi�ne XGPIOPS_IRQ_TYPE_LEVEL_LOW 4 /**<  
Interrupt on low level */

 If you decide to use the bank enable, you need to know which 
bank the pin or pins you wish to enable interrupts are on. The 
Zynq SoC supports a maximum of 118 GPIOs. In this configura-
tion, all of the MIOs (54 pins) are being used as GPIO along with 
the EMIOs (64 pins). We can break this configuration into four 
banks, with each bank containing up to 32 pins. 
 This setup function will also define the interrupt service 
routine, which is to be called when the interrupt occurs that 
uses the function:

XGpioPs_SetCallbackHandler(Gpio,  
   (void *)Gpio, IntrHandler);

 The interrupt service routine can be as simple or as com-
plicated as the application defines. For this example, it will 
toggle the status of an LED on and off each time a button is 
pressed. The interrupt service routine will also print out a 
message to the console each time the button is pressed.

static void IntrHandler(void *CallBackRef, int 
Bank, u32 Status)
{
 int delay;
         XGpioPs *Gpioint = (XGpioPs *) 

CallBackRef;
    XGpioPs_IntrClearPin(Gpioint, pbsw);
  printf(“****button pressed****\n\r”); 

toggle = !toggle;
  XGpioPs_WritePin(Gpioint, ledpin, toggle); 

for( delay = 0; delay < LED_DELAY; delay++) 
//wait

 {}
}

PRIVATE TIMER EXAMPLE 
The Zynq SoC has a number of timers and watchdogs avail-
able. These are either private to a CPU or a shared resource 
available to both CPUs. Interrupts are required if you are to 
use these components efficiently in your design. The timers 
and watchdogs include the following:

•  CPU 32-bit timer (SCUTIMER), clocked at half the CPU  
frequency

•  CPU 32-bit watchdog (SCUWDT), clocked at half the CPU  
frequency 

•  Shared 64-bit global timer (GT), clocked at half the CPU  
frequency (each CPU has its own 64-bit comparator; it is  
used with the GT, which drives a private interrupt for  
each CPU)

•  System watchdog timer (WDT), which can be clocked  
from the CPU clock or an external source 

•  A pair of triple timer counters (TTCs), each containing  
three independent timers. The TTCs can be clocked by the  
CPU clock or by means of an external source from the  
MIO or EMIO in the programmable logic.

 To gain the maximum benefit from the available timers 
and watchdogs, we need to be able to make use of the Zynq 
SoC’s interrupts. The simplest of these to configure is the pri-
vate timer. Like most of the Zynq SoC’s peripherals, this tim-
er comes with a number of predefined functions and macros 
to help you use the resource efficiently. They are contained 
within the following:

#include�“xscutimer.h”

 This file contains functions (macros) that will provide a 
number of capabilities, including initialization and self-test. 
The functions within this file will also start and stop the tim-
er, and manage the timer (restart it; check to see if it has 
expired; load the timer; enable/disable auto loading). Anoth-
er of their jobs is to set up, enable, disable, clear and man-
age the timer interrupts. Finally, these functions also get and 
then set the prescaler.

The timer itself is controlled via the following four 
registers:

•  Private Timer Load Register – This register is used in auto 
reload mode. It contains the value that is reloaded into the 
Private Timer Counter Register when auto reload is enabled.

•  Private Timer Counter Register – This is the actual  
counter itself. When enabled, once this register reaches  
zero the interrupt event flag is set.

•  Private Timer Control Register – The control register  
enables or disables the timer, auto reload mode and  
interrupt generation. It also contains the prescaler for  
the timer.
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 //enable interrupt on the timer
 XScuTimer_EnableInterrupt(TimerInstancePtr);

 Where TimerIntrHandler is the name of the function that 
is called when the interrupt occurs, the timer interrupt must 
be enabled on the GIC and within the timer itself. 

The timer interrupt service routine is very simple. All it 
does is to clear the pending interrupt and write out a message 
over the STDOUT, as follows:

static�void�TimerIntrHandler(void�*CallBackRef)
{

 XScuTimer *TimerInstancePtr =  
     (XScuTimer *) CallBackRef;
 XScuTimer_ClearInterruptStatus(TimerInstancePtr);
� printf(“****Timer Event!!!!!!!!!!!!!****\n\r”);

 With this action complete, the final thing to do is to mod-
ify the GPIO interrupt service routine to start the timer each 
time the button is pushed, as such:

 //load timer
 XScuTimer_LoadTimer(&Timer, TIMER_LOAD_VALUE);
 //start timer
 XScuTimer_Start(&Timer);

 To do this we first load the timer value into the timer 
and then call the timer start function. Now we can again 
clear the pushbutton interrupt and resume processing, as 
seen in Figure 3.

Many engineers initially approach an interrupt-driv-
en system design with trepidation. However, the Zynq 
SoC’s architecture, with the Generic Interrupt Controller 
coupled with the drivers provided with the SDK, enables 
you to get an interrupt-driven system up and running very 
quickly and efficiently. 

•  Private Timer Interrupt Status Register – This register  
contains the private timer interrupt status event flag.

 As for using the GPIO, the timer device ID and timer in-
terrupt ID that are needed to set up the timer are contained 
within the XParameters.h file. Our example will use the 
pushbutton interrupt that we developed previously. When 
the button is pressed, the timer will load and start to run 
(not in auto reload mode). Upon expiration of the timer, 
an interrupt will be generated that will write a message out 
over the STDOUT. The interrupt will then be cleared to wait 
until the next time the button is pressed. This example will 
always load the same value into the counter; hence with the 
declarations at the top of the file, the timer count value is 
declared, as follows:

#define�TIMER_LOAD_VALUE 0xFFFFFFFF

 The next stage is to configure and initialize the private 
timer and load the timer count value into it.

 //timer initialisation
 TMRConfigPtr = XScuTimer_LookupConfig 
   (TIMER_DEVICE_ID);
 XScuTimer_CfgInitialize(&Timer,  
   TMRConfigPtr,TMRConfigPtr->BaseAddr);
//load the timer
 XScuTimer_LoadTimer(&Timer, TIMER_LOAD_VALUE);

 We also need to update the interrupt setup subroutine to 
connect the timer interrupts to the GIC and enable the timer 
interrupt.

 //set up the timer interrupt
 XScuGic_Connect(GicInstancePtr, TimerIntrId,
(Xil_ExceptionHandler)TimerIntrHandler, 
    (void *)TimerInstancePtr);
 //enable the interrupt for the Timer at GIC
 XScuGic_Enable(GicInstancePtr, TimerIntrId);

Figure 3 – This screen shows an example of the GPIO and timer interrupt event outputs.
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T
hanks to their flexibility and per-
formance, FPGAs have found 
their way into a number of indus-
trial, science, military and other 
applications that require the cal-

culation of complex mathematical problems 
or transfer functions. It is not uncommon to 
see tight accuracy and calculation latency 
times in the more critical applications.
 When using an FPGA to implement math-
ematical functions, engineers normally 
choose fixed-point mathematics (see Xcell 
Journal issue 80, “The Basics of FPGA 
Mathematics,” http://issuu.com/xcelljour-
nal/docs/xcell80/44?e=2232228/2002872). 
Also, there are many algorithms, such as 
CORDIC, that you can use to calculate tran-
scendental functions (see Xcell Journal is-
sue 79, “How to Use the CORDIC Algorithm 
in Your FPGA,” http://www.xilinx.com/
publications/archives/xcel l/Xcell79.pdf). 
 However, when confronting functions that 
are very mathematically complex, there are 
more efficient ways of dealing with them than 
by implementing the exact demanding func-
tion within the FPGA. To understand these 
alternative approaches—especially one of 
them, polynomial approximation—let us first 
define the problem.

LAYING OUT THE PROBLEM 
One such example of a complex mathematical 
transfer function would be within an FPGA 
that monitors a platinum resistance ther-
mometer (PRT) and converts the resistance 
of the PRT into a temperature. This conver-
sion typically occurs using a Callendar-Van 
Dusen equation. In its simplified form, shown 
below, this equation can determine tempera-
tures between 0oC and 660oC.

 

where R
0
 is the resistance at 0oC and a and 

b are coefficents of the PRT and t is the 
temperature.
 In reality, we want to go from a resistance 
to a temperature. To do so, we need to rear-
range the equation so that the result is the 
temperature for a given resistance. Most sys-
tems that use a PRT will design electronics 
to measure the resistance of the PRT using 
an electronic circuit, leaving the FPGA to cal-

One of the great benefits  
of FPGAs is that you can  
use their embedded DSP  
blocks to tackle the knottiest 
mathematical transfer functions. 
Polynomial approximation is  
one good way to do it.

http://issuu.com/xcelljournal/docs/xcell80/44?e=2232228/2002872
http://www.xilinx.com/publications/archives/xcell/Xcell79.pdf
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 Engineers often call the DSP slices 
DSP48s, due to the 48-bit accumulator 
they provide. However, these slices 
also supply 25 x 18-bit-wide multipliers 
and addition/subtraction capabilities, 
among many other faculties. It is these 
internal RAM structures and DSP slices 
that you can use to implement transfer 
functions with greater ease.

POLYNOMIAL APPROXIMATION   
One method that utilizes the DSP- and 
RAM-rich architecture of the FPGA 
is polynomial approximation. To use 
this technique, you must first plot 
the mathematical function, covering 
the input value range in a mathemati-
cal program such as MATLAB® or Ex-
cel. You can then add a polynomial 
trend line to the data set in question, 
such that the equation for the trend 
line can then be implemented within 
the FPGA in place of the mathemati-
cally complex function, provided the 
trend-line equation meets the accu-
racy requirements.  

culate the temperature using the rear-
ranged equation below.

 

 
 Implementing this equation within 
an FPGA may be daunting for even a 
seasoned FPGA engineer. Plotting the 
obtained resistance against temperature 
results in a graph as shown in Figure 1. 
From the graph, you can clearly see the 
nonlinearity of the response.
 Implementing the rearranged trans-
fer function in an FPGA directly could 
be a significant challenge, both in terms 
of actual design effort required and 
then in validation (ensuring accuracy 
and function across boundary and cor-
ner-case conditions). Many engineers 
will look for different methods to imple-
ment the function in a way that will re-
duce design and validation effort so as 
to protect project time scales. One pos-
sible approach would be using a lookup 
table to store a number of points on the 

curve with linear interpolation between 
the points within the LUT. 
 This approach may fit the bill, depend-
ing upon the accuracy requirement and 
number of elements stored within the 
lookup table. However, you will still need 
to include a linear interpolator function 
within the design. This function can be 
mathematically sophisticated and will 
often include a non-power-of-two divide, 
which adds to the complexity.

CAPITALIZE ON FPGA RESOURCES 
Instead, there is another method you can 
use to implement these types of transfer 
functions—one that capitalizes upon the 
very nature of the FPGA. Modern FPGAs 
like the Xilinx® Spartan®-6 and the 7 se-
ries Artix®, Kintex® and Virtex® lines con-
tain much more than just the traditional 
lookup tables and flip-flops. They also 
come with built-in DSP slices, Block RAM 
and distributed RAM, along with many 
advanced hard IP cores such as PCIe® 
and Ethernet endpoints, high-speed serial 
links and so on.  
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Figure 1 – The plotted transfer function
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 Most mathematical programs capable 
of adding a polynomial trend line allow 
you to select the order, or number of 
polynomial terms. The larger the order, 
the more accurate the fit should be—but 
the more terms you will need to imple-
ment within the FPGA. When perform-
ing this process for the transfer function 
example we are using in Microsoft Ex-
cel, we obtained the trend line and equa-
tion seen in Figure 2. This example used 
the polynomial order of four.
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y = 2E-09x4 - 4E-07x3 + 0.0011x2 +
2.403x -251.26

 Having obtained the polynomial 
fit for the transfer function we want 
to implement, we can then dou-
ble-check for accuracy against the 
original transfer function using the 
same analysis tool, in this case Excel. 
For the case in point where tempera-
ture is being monitored, it may be 
that the end measurement has to be 
accurate to +/-1oC, not a particular-
ly demanding accuracy requirement. 
Still, it may prove difficult to achieve 

using just one polynomial equation, 
depending upon the range of mea-
surements and the transfer function 
you are implementing. How can we 
address this problem?

MULTIPLE TREND LINES  
SELECTED BY INPUT VALUE 
Should one polynomial equation not 
provide sufficient accuracy over the 
entire transfer function input range, 
just add more. It is still possible to 

Figure 2 – Trend line and polynomial equation for the temperature transfer function 

Should one polynomial equation not provide sufficient 
accuracy over the entire transfer function input range,  

just add more. You can still rely on this approach so long 
as you generate a number of polynomial constants for 

use across the input range. 
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use this approach so long as you gen-
erate a number of polynomial con-
stants for use across the input range. 
Thus, once the input value goes out-
side specific bounds, a new set of 
constants is loaded.
 Continuing with the tempera-
ture example, the first polynomial 
equation provides +/- 1oC of accura-
cy between 0o and 268oC. For many 
applications this will be more than 
sufficient. Suppose that we require 
an extended operating range and tol-
erance to 300oC, which would mean 
our initial approach did not meet the 
design requirements. Using a seg-
mented approach, we can address 
this problem by plotting the range be-
tween 269oC and 300oC and obtaining 
a different polynomial equation that 
will provide more accuracy for this 
output range (see Figure 3).
 In short, the implementation uses 
the first polynomial constants until 
the input value goes above a precalcu-

lated range that corresponds to 268oC. 
Above that range, the second set of 
constants is used to maintain the accu-
racy requirements. 
 In this way, you can break a transfer 
function into a number of segments 
to achieve the desired accuracy. You 
may opt to space these segments uni-
formly across the transfer function—
that is, split them into 10 segments of 
equal value of X. Alternatively, you 
can make them nonuniform and seg-
ment them as required to achieve the 
desired accuracy, focused upon areas 
of the transfer function where accura-
cy is harder to obtain. 
 Among the trade-offs to consider 
when deciding upon your implementa-
tion, keep in mind that a uniform ap-
proach may require a larger memory 
footprint than a nonuniform approach. 
Depending upon the transfer function 
you are implementing, going with a 
nonuniform approach could result in a 
considerable saving.

HOW DOES IT COMPARE?   
Of course, as I mentioned earlier 
there are other methods you can use 
to implement transfer functions. The 
four most commonly used methods 
aside from polynomial approxima-
tion are software routines, lookup 
tables, a lookup table with interpola-
tion and CORDIC. 
 The use of software to calculate the 
transfer function complicates the sys-
tem architecture due to the need to 
add a processor (with an associated in-
crease in design complexity, BOM cost 
and so on). Even if the design team mit-
igates this drawback by using a system-
on-chip such as the Xilinx Zynq®-7000 
All Programmable SoC, challenges still 
remain. For starters, the time it takes to 
calculate the transfer function in soft-
ware would be much longer than can 
be achieved in logic, reducing the sys-
tem response time. In fact, calculation 
of transfer functions such the one used 
in our sample design is a classic exam-
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Figure 3 – Plotting between 269oC and 300oC to provide a more accurate result   
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tions such as sine, cosine, multipli-
cation, division, square root and so 
on. Therefore, it is possible to imple-
ment transfer functions exactly using 
a combination of CORDIC algorithms 
and basic mathematical blocks. The 
technique can result in higher pre-
cision. However, for a complicated 
transfer function, this gain in preci-
sion will come at the cost of increased 
design and verification time. There 
will of course be an impact on the op-
erating frequency of a device imple-
mented in this way.
 Polynomial approximation there-
fore presents a middle ground among 
the four alternative options, offering a 
good trade-off in performance, accura-
cy and implementation footprint.

EASE OF IMPLEMENTATION 
Every engineer wants to produce an 
FPGA that has an optimal utilization of 
device resources. Polynomial approxi-
mation allows you to benefit from the 
multiplier- and RAM-rich environment 
provided by the FPGAs, and to use these 
resources to easily implement what at 
first might appear to be a very complex 
mathematical transfer function. 

ple of where the processing should be 
offloaded to the programmable logic 
side of the Zynq SoC.  
 The efficacy of the second approach—
using a lookup table containing precalcu-
lated values for the input—can vary de-
pending upon the range and width of the 
input values. At times, the result will very 
quickly be a very large LUT that requires 
a lot of RAM within the FPGA. Depend-
ing upon the FPGA, this approach could 
require more resources than are avail-
able, or it might cause conflicts with re-
quirements for other modules within the 
design. On the plus side, of course, this 
method will result in a very fast “calcula-
tion” of the result. 
 The third potential approach—a 
lookup table with interpolation—is 
one we explored earlier and is an at-
tempt to reduce the number of mem-
ory locations needed with a full LUT 
approach. This technique does re-
quire the engineer to write a linear in-
terpolation function within the FPGA, 
which can be a little involved. It is, 
however, still much simpler than the 
final option: CORDIC. 
 A CORDIC algorithm is capable of 
implementing transcendental func-

Polynomial approximation
presents a middle ground
among the four alternative 
methods of implementing 

transfer functions, offering 
a good trade-off in 

performance, accuracy 
and footprint.
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Make Slow Software Run 
Fast with Vivado HLS

Anyone plagued  
by code bottlenecks  
should explore the  
one-two punch of 
high-level synthesis 
and the Zynq SoC. 
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Have you ever written some software 
that, despite your best coding efforts, 
didn’t run as fast as desired? I have. 
Have you thought, “If only there were 
an easy way to put some of the code into 
multiple custom processors or custom 
hardware that wasn’t so expensive”? Af-
ter all, your application is one of many, 
and custom hardware takes time and 
money to create. Or does it?
 I began rethinking this proposition 
recently when I heard about the Xilinx® 
high-level synthesis tool, Vivado® HLS. 
In combination with the Zynq®-7000 All 
Programmable SoC, which combines a 
dual-core ARM® Cortex™-A9 processor 
with an FPGA fabric, high-level synthe-
sis opens up new possibilities in design. 
This class of tools creates highly tuned 
RTL from C, C++ or SystemC source 
code. Many purveyors of this technol-
ogy exist, and the rate of adoption has 
been increasing in recent years. 
 So, how hard would it be to migrate 
some of that slow code into hardware, 
if indeed I could simply use Vivado HLS 
to do the more demanding computa-
tions? After all, I usually wrote my code 
in C++, and Vivado HLS used C/C++ 
as an input. The ARM processor cores 
meant I could run the bulk of my soft-
ware in a conventional environment. In 
fact, Xilinx has even made available a 
software development kit (SDK) and 
PetaLinux for this purpose.

by David C. Black 
Senior Member of Technical Staff   
Doulos 
david.black@doulos.com

ARCHITECTURAL CONCERNS 
As I started to think about this trans-
formation from a software perspective, 
I grew concerned about the software 
interface. After all, HLS creates hard-
ware dedicated to processing hardware 
interfaces. I needed something easy to 
access, like a coprocessor or hardware 
accelerator, to make the software go 
faster. Also, I didn’t want to write a 
new compiler. To make it easy to ex-
change data with the rest of the soft-
ware, the interface needed to look like 
simple memory locations where we 
could place the inputs and later read 
back the results. 
 Then I made a discovery. Vivado HLS 
supports the idea of creating an AXI 
slave with relatively little effort. This 
capability started me thinking an accel-
erator might not be so difficult to create 
after all. Thus, I found myself coding up 
a simple example to explore the possi-
bilities. I was pleasantly surprised with 
how it turned out. 

Let’s take a walk through the ap-
proach I took and consider the results. 
 For my example, I chose to model a 
set of simple matrix operations such as 
add and multiply. I didn’t want it to be 
constrained to a fixed size, so I would 
have to provide both the input arrays 
and their respective sizes. An ideal in-
terface would put all the values as sim-
ple arguments to a function, such as the 
code in Figure 1.
 The interface to the hardware would 
need to have a simple way to map the 
function arguments to memory loca-
tions. Figure 2 shows a memory layout 
to support this mapping. The registers 
would hold information about how 
matrices were laid out and what the 
desired operations would be. The com-
mand register would indicate which 
operation to do. This would allow me 
to combine several simple operations 
into one piece of hardware. The status 
register would simply be a way to know 
if the operation was in progress or had 
finished successfully. Ideally, the de-
vice would also support an interrupt.

H

mailto:david.black@doulos.com
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and conveniently PetaLinux provides 
a mechanism known as the User I/O 
device. UIO allows a simple approach 
to mapping the new hardware into 
user memory space, and provides the 

ability to wait for an interrupt. This 
means you avoid the awkward time 
and process of writing a device driv-
er. Figure 4 illustrates the system.
   There are of course a few drawbacks 
to this approach. For instance, the 
UIO device cannot be used with DMA, 
so you must construct matrices in the 
device memory and manually copy 
them out when done. A custom device 
driver in the future could address that 
issue if needed.

SYNTHESIZING THE HARDWARE 
WITH VIVADO HLS 
Back to the topic of synthesizing the AXI 
slave. How difficult would this be? I found 
the coding restrictions to be quite reason-
able. Most of the C++ language could be 
used with the exception of the dynamic 
allocation of memory.  

After all, hardware doesn’t manufac-
ture itself during operation. This fact 
also restricts the use of the Standard 
Template Library (STL) functions, be-
cause they make heavy use of dynamic 
allocation. As long as the data remains 
static, most features are available. At 
first this task appeared onerous, but I re-
alized it wasn’t a huge deal. Also, Vivado 
HLS allows for C++ classes, templates, 
functions and operator overloading. 
My matrix operations could easily be 
wrapped in a custom matrix class. 
 Adding the I/O to create an AXI slave 
was easy. Simply add some pragmas to 
indicate which ports participate and 
what protocol they would use.

 Going back to the hardware design, I 
learned that Vivado HLS allows for array 
arguments to specify small memories. 
Thus, the functionality would be described 
with a function such as Figure 3 shows. 

 Assuming the ability to synthesize 
the AXI slave, how would this fit 
with the software? My normal coding 
environment assumes Linux. Fortu-
nately, Xilinx provides PetaLinux, 

Figure 1 – Example call to accelerator 

Figure 2 – Register summary table 

 Addr Register name Dir Bits Contents  

 0 Matrix0_ptr RW 32 Address of matrix 0 data

 4 Matrix0_shape RW 32 Rows matrix 0 Cols matrix 0

 8 Matrix1_ptr RW 32 Address of matrix 1 data

 12 Matrix1_shape RW 32 Rows matrix 1 Cols matrix 1

 16 Matrix2_ptr RW 32 Address of matrix 2 data

 20 Matrix2_shape RW 32 Rows matrix 2 Cols matrix 2

 24 Matrix3_ptr RW 32 Address of matrix 3 data

 28 Matrix3_shape RW 32 Rows matrix 3 Cols matrix 3

 32 -reserved- - 32  

 36 -reserved- - 32  

 40 Command RW 32 0  enum

 44 Status RW 32 0  enum

8192 x 32 memory

Figure 3 – Accelerator function API

int Accelerator(int registers[16], int memory[8192]);

Matrix operand1(5,10), operand2(10,5), product(10,10);
int status;
status = matrix_op(MUL, operand1, operand2, product); // product = operand1 * operand2;
if (status != 0) cout << “ERROR: multiplication failed” << endl;
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Figure 4 – System diagram 
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 Running the synthesis tool was also 
fairly easy as long as I didn’t push all 
the knobs. Figure 5 shows the overall 
steps involved, which I won’t describe 
in detail here. Vivado HLS needs a bit 
of direction as to the target technol-
ogy and clock speed. After that the 
process involved keeping an eye on 
the reports for violations of policy, 
and studying the analysis report to 
ensure Vivado HLS had done what 
I expected. Tool users need to have 
some appreciation for the hardware 
aspects, but technology classes exist 
to cover that issue. There is also the 
matter of running simulations both 
before and after synthesis to verify 
the expected behavior.
 The Vivado IP Integrator made 
connecting the AXI slave into the 
Zynq SoC hardware a breeze, and re-
moved concerns that signals would 
be hooked up incorrectly. Xilinx 
even has a profile for my develop-
ment system, the ZedBoard, and IP 
Integrator exports data for the soft-
ware development kit.

UNCLOGGING THE BOTTLENECKS  
I am truly pleased with the results, 
and hope to do more with this chip-
and-tool set combination. I have not 
explored all the possibilities. For in-
stance, Vivado HLS also supports an 
AXI master interface. AXI would al-
low the accelerator to copy the matri-
ces from external memory (although 
security issues might exist for this 
case). Nevertheless, I highly recom-
mend that anyone looking at code 
bottlenecks in their software should 
look at this tool set. Ample training 
classes, resources and materials exist 
to enable a fast ramp, including those 
from Doulos. See www.doulos.com 
for more information. 

Running the synthesis tool was fairly easy  
as long as I didn’t push all the knobs.

http://www.doulos.com
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Xilinx Opens 
a Tcl Store 
by Greg Daughtry 
Director of Product Marketing
Xilinx, Inc.
greg.daughtry@xilinx.com
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Open-source  
repository for  
sharing Tool  
Command Language  
scripts is up  
and running at  
GitHub.com.

O
ver the last five years 
Xilinx has had a stra-
tegic focus on design 
methodology and tools 
to address productiv-
ity, to accelerate the 

design cycle and to help bring products 
to market faster by providing the indus-
try’s most advanced and comprehensive 
development environment.   
 Even with the productivity improve-
ments of the next-generation Vivado® 
Design Suite combined with the com-
prehensive UltraFast™ Design Meth-
odology, designing with today’s All Pro-
grammable devices can be challenging. 
Designers must integrate hundreds of 
highly parameterized IP cores, hun-
dreds of thousands of placeable ob-
jects and multiple millions of logic cells 
with Xilinx® All Programmable FPGAs, 
3D ICs and SoCs. There are an infinite 
number of permutations to grapple with 
as designers push the boundaries with 
complex designs. 
 With the release of Vivado 2014.1 in 
April, Xilinx is taking another large step 
forward in designer productivity by 
hosting an open-source repository for 
sharing Tool Command Language (Tcl) 
code. This repository, called the Xilinx 
Tcl Store, will make it a lot easier to 
find and share Tcl (pronounced “tick-
le”) scripts that other engineers have 
developed. With the power of Tcl, these 
scripts can extend the considerable 
core functionality of the Vivado Design 
Suite, enhancing productivity and ease 
of use. The Tcl Store is open to the user 
community to contribute to the greater 
good of all designers by publishing Tcl 
code that others might find useful. 

DESIGNS GROWING 
MORE COMPLEX 
The Vivado Design Suite was built on 
an open, scalable data model. As an 
open system, one of the keys to en-
abling productivity is making the tools 
smarter, and providing more custom-
ization choices and analysis capabil-
ities so the designer can be better in-

formed and drive the tools to provide 
optimal implementations.
 Since the release of the Vivado De-
sign Suite in 2012, there has been an ex-
plosion of Tcl scripting to perform tasks 
both small and large. It’s increasingly 
important for designers to understand 
and utilize Tcl, since this is the basis for 
Vivado’s XDC constraint language. 
 The Tcl commands allow you to de-
velop and scrub timing constraints in-
teractively, which saves compilation 
time and debug effort. The core com-
mands allow object queries that can be 
used for custom reporting, and that can 
execute very elaborate tool control. The 
Vivado Design Suite makes it possible to 
also develop your own DRC and linting 
checks, along with highly customized 
flows to achieve better quality of results 
or faster run-times. Tcl also enables de-
signers to make targeted design chang-
es through engineering change order 
(ECO) operations.
 The increased productivity provided 
with Tcl, ease of creation and readabil-
ity make this language prime for the 
sharing of useful code. Up to now this 
sharing has largely occurred on an ad 
hoc basis, via e-mail and user forums. 
Some companies have established their 
own internal libraries of Tcl for use 
within their projects. 
 Now Xilinx is taking Tcl sharing to the 
next level with its new Xilinx Tcl Store.

WELCOME TO THE TCL STORE
The Xilinx Tcl Store provides exam-
ples of how to write custom reports, 
control specific tool behavior, make 
custom netlist changes and integrate 
with third-party electronic design auto-
mation (EDA) tools such as simulation, 
synthesis, timing and power analysis, 
and linting tools.  
 Natively accessed from the Vivado 
Integrated Design Environment (IDE), 
the Tcl Store enables users to select 
and install collections of Tcl scripts 
called “apps” directly from within the 
tool. Once installed, these apps have 
commands that appear just like built-
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INSTALLATION AND USE 
Designers can access the Xilinx Tcl 
Store by means of an icon on the Get-
ting Started page when you first launch 
the Vivado IDE. Alternatively, you may 
also go to the Tools Menu and select 
the “Xilinx Tcl Store” menu option. This 
will bring up the repository dialog box, 
which will give you a list of apps avail-
able to install (Figure 1).
 As you browse the list of apps, with-
in each app there is a list of commands 
(called “procs” in Tcl) that are available 
for execution. You will see a description of 
each app, and of each proc within the app, 
to get an idea of what it does. Click on the 
install button to install the app and register 
it so that it now shows up like native Viva-
do Design Suite commands. Once an app 
is installed, each time you start the Vivado 

Design Suite it loads automatically—there 
is no need to install the app each time you 
start a new session.
 Procs have a naming convention 
that uses a facility in Tcl called name-
spaces. The names of the commands 
may seem a little more complex than 
normal Tcl commands, and have “::” 
characters embedded in them. For 
example, xilinx::ultrafast::check_pll_
connectivity runs some connectivity 
checks on the clock-modifying blocks 
in Xilinx devices. The naming conven-
tions serve to make sure the Tcl code is 
unique and that a proc in one app does 
not conflict with another proc by the 
same name in another app. Namespaces 
are a standard feature of Tcl. 
 To execute an app command, type in 
the fully qualified name of the proc in-

in Vivado Design Suite commands, 
right down to the help infrastructure. 
Vivado Design Suite supports differ-
ent versions of apps using standard 
package facilities of Tcl, so if a newer 
version is released you can choose to 
upgrade with a single mouse click.
 The Xilinx Tcl Store is intended to 
make it easier to find and use well-craft-
ed Tcl scripts developed and supported by 
the user community, in the same manner 
as Linux development. Tcl scripting is a 
little more advanced than selecting IDE 
buttons. However, it is easy to learn. Docu-
mentation and user guides provide details 
on specific commands from the Tcl API 
and can be found on xilinx.com/support. 
 Let’s take a closer look at the infra-
structure for installing and using Tcl 
apps from the Xilinx Tcl Store.

Figure 1 – The Tcl Store dialog box in the Vivado IDE allows installation of apps and browsing of the commands.

http://www.xilinx.com/support
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cluding the namespace, and optionally 
pass in any required arguments, just like 
other Tcl commands. Since the com-
mands are using standard namespaces, 
you can also choose to import the com-
mands into the global namespace. The 
strategy will work fine if there are no 
conflicts between any other command 
names. This will allow you to omit the 
namespace qualifier and use the proc 
name alone. In the example above, if 
you imported the UltraFast app into the 
global namespace, you could call the 
check_pll_connectivity command di-
rectly without the namespace qualifers.
 Designers can uninstall apps with a 
single click of the “Uninstall App” hy-
perlink within the details section of the 
app. There is also a “Refresh” button to 
update the catalog. The Tcl Store catalog 
is hosted on a third-party website that 
provides the ability to push out updates 
to app revisions independently of Vivado 
Design Suite releases. If the catalog is re-
freshed, the Vivado tools will perform a 
lightweight synchronization of the list of 
apps. If an updated version of an installed 
app is available, use the “Update” button 
to acquire it. The Vivado Design Suite 
will copy and sync the latest version of 
the app and install it. To avoid configu-
ration control issues, upgrades are only 
installed at the designer’s request. For 
those who are concerned about security 
and would prefer to keep the Vivado De-
sign Suite from syncing outside of their 
network firewall, there is a parameter to 
disable the catalog synchronization.
 Usage of Tcl apps in the Xilinx Tcl Store 
is meant to be easy and simple. Xilinx’s 

Usage of Tcl apps in the Xilinx Tcl Store is 
meant to be easy and simple. Xilinx’s goal is to 
encourage use and sharing among development 

teams around the world to improve productivity.
goal is to encourage use and sharing 
among development teams around the 
world to improve productivity. Only the 
latest version of any given app is dis-
played and designers can only install or 
upgrade to the latest supported version. 
Of course, the best way to have good 
usage is to ensure that there is a rich li-
brary of useful code. Xilinx has seeded 
the repository with a collection of help-
ful utility and integration scripts that you 
can peruse as good examples of how to 
build your own reusable Tcl scripts.

CONTRIBUTING TO THE TCL STORE
There are two ways to contribute to the 
Tcl Store and make your script available 
to all Vivado Design Suite users. The first 
is to modify an app that already exists. 
The second is to develop and submit 
a request for a new app. To contribute 
code to the repository, you need to have 
some level of comfort with software de-
velopment tools for revision control, or 
at least a willingness to learn.
 Each app is controlled by a single 
person, usually the person who au-
thored most of the code, referred to as 
the “app owner.” The Xilinx repository 
as a whole is controlled by Xilinx, and 
the company maintains a process for re-
leasing the apps into the public domain 
to enforce basic consistency across the 
apps.  Xilinx employees will perform a 
“gatekeeper” role to ensure quality. 
 The “contributor” who wishes to 
modify an existing app or add a new one 
will work with the gatekeeper and app 
owner for the submission, consistent 
with the process on other open-source 

projects. A wiki on the site where the 
code is hosted documents this process.
 Basic requirements will be enforced for 
all code submissions. Xilinx has attempt-
ed to keep this list—which is subject to 
change—as small as possible, while still 
ensuring a reasonable user experience. 
Here is the list of basic app requirements 
you need to adhere to:

•  Follow basic coding-style guidelines 
by using procs with arguments that 
do not use or access global variables.

•  Include basic documentation inside the 
proc that describes what it does, what 
the arguments are and what it returns.

•  Make sure code passes a basic syn-
tax check, and also passes a linting 
tool that is provided as a part of the 
Vivado Design Suite.

•  Provide a minimum of one basic test 
for each proc that ensures the code at 
least runs and does what is expected. 

THE TCL STORE ON GITHUB 
The Xilinx Tcl Store is hosted on a 
third-party website called GitHub.com. 
The store uses revision-control tools 
to ensure distributed development 
happens in a controlled way. The key 
to this process is Git, a popular open-
source, distributed revision-control 
tool that is commonly used for Linux. 
To access the repository for contribu-
tion and testing, you register for a free 
account on GitHub.com, and install 
and set up Git. GitHub provides an 
installation of Git tools for Windows 
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PCs. Linux machines typically already 
have it or can install it through stan-
dard packages. GitHub provides tuto-
rials to help you get started with Git.
 Once you have a GitHub account, 
here are the steps for contributing to 
the Tcl Store repository:

1.  Clone the Xilinx Tcl Store master 
repository. This creates a local copy 
that is your sandbox and it allows 
you to develop locally and test with-
out impacting others.

2.  Place your new code in the correct 
directory, following the established 
guidelines based on app name and 
company or GitHub username. Use 
standard Git add commands.

3.  Use Vivado Design Suite in the local 
repository, and call a few commands 
that are necessary for registering the 

code and generate a catalog.xml file. 
This is one of three files that you will 
need. The others are a package index 
and a Tcl index.

4.  Open Vivado Design Suite in an-
other location, point to the local 
repository and test your apps. Run 
the linter and your local tests un-
til you are comfortable that all is 
working correctly.

5.  Commit your changes and provide a 
message briefly documenting them.

6.  Send an e-mail requesting permission 
to contribute to tclstore@xilinx.com. 
Indicate whether you’d like to create 
a new app and what you’d like to call 
it. If you’d like to modify or contrib-
ute to an existing app, please indicate 
that; you will need permission from 
the app owner.

7.  Go to GitHub.com using a Web 
browser and issue a pull request. 
This formally initiates the process 
of merging your contributions into 
the repository. Work with the gate-
keeper and app owner as appropri-
ate to resolve any issues through 
GitHub and e-mail.

8.  Congratulations! It feels good to help 
your fellow designers.

Figure 2 shows a basic diagram of 
the workflow showing the submis-
sion process. 

THE FINE PRINT  
The Xilinx Tcl Store is open source, and 
there is no facility to monetize or charge 
for contributions. Apps contributed to 
the Tcl Store are made freely available for 
derivative works through a BSD license 
commonly used in open-source projects. 

App Submission/Review Process

Contributor Gatekeeper

App Owner

Contributor Gatekeeper

App Owner

3. Send pull request
(needs permission to send)

1. Create/update/test app
2. Push to own master

7. Review/test
8. Merge/close pull request

4. Assign

5. Review/test

6. Approve/reject

Figure 2 – Workflow of the Xilinx Tcl Store submission process passes through several discrete steps.
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Contributions to the repository will in-
clude a version of the BSD license with 
each app in order for it to be accepted 
and published publicly. If a company or 
user does not wish to release their intel-
lectual property into the public domain, 
Vivado Design Suite does support local 
versions of the repository via the same 
mechanism that is used for testing prior 
to issuing a pull request. 
 Furthermore, since the project uses 
GitHub for hosting, submitters must 
agree to the GitHub terms of service 
when you register for an account, as 
this is a third-party service.
 The apps in the app store are developed 
and supported by the user community. 
This means that Xilinx technical support 
has not received training on this function-
ality and will not be able to answer ques-
tions about Tcl code. Please direct support 
questions for these apps to the Xilinx user 
forums. If a bug or issue exists in a piece 
of code, you can file and track it directly 
in GitHub.com projects. Since this is an 
open-source development model, users 
are encouraged to fix these issues and im-
prove the experience for the overall good 
of other users—just like Linux. 

ROAD MAP  
The Vivado 2014.1 introduction of the 
Tcl Store is just the beginning. Xilinx will 
be improving the Tcl Store this year by 
implementing the ability to search the 
descriptions of the apps and procs to 
make it easier to find functions. We will 
be providing a way to browse and view 
the source code without having to install 
the app. In addition, we intend to pro-
vide a review mechanism where users 
can specify a rating of one to five stars, 
and optionally provide a written review. 
This will give people feedback mecha-
nisms on the more popular submissions. 
 We will also make use of better 
categorization with filtering capability 
based on the categories of apps, for ex-
ample simulation, synthesis, implemen-
tation, project and netlist utilities. As 
the repository grows, we may institute 
more groupings and extend the taxono-
my of apps to reflect the contributions. 

We want to make it as easy as possi-
ble to contribute apps, so we may look 
for ways to allow people to submit Tcl 
scripts by e-mail with a minimal sup-
port burden and no need to go through 
GitHub. The uncontrolled nature of such 
a process would not be coupled with the 
current installation scheme, and would 
perhaps be best suited for examples.
 Thousands of designers around the 
world are using the Vivado Design Suite 
and hundreds of companies have adopt-
ed the UltraFast Design Methodology. 
The Xilinx Tcl Store will continue to in-
crease designer productivity by provid-
ing a new open-source project between 
Xilinx, its partners and our customers 
aimed at sharing Tcl scripts. 

  INFORMATION AND RESOURCES

To request GitHub account access 
and to see tutorials on Git and 
GitHub, go here:

https://github.com/

The Xilinx Tcl Store code reposito-
ry as well as a wiki that documents 
how to contribute are located here:

https://github.com/Xilinx/Xilinx-
TclStore

The Xilinx Tcl Store wiki contains 
detailed information concerning 
the contribution process:

https://github.com/Xilinx/Xilinx-
TclStore/wiki/Xilinx-Tcl-Store-
Home

UG 894, the “Using Tcl Scripting 
Guide,” contains information on the 
general scripting capabilities of the 
Vivado Design Suite:

http://www.xilinx.com/support/
documentation/sw_manuals/
xilinx2013_4/ug894-vivado-tcl-
scripting.pdf

UG 835, “Tcl Command Reference,” 
contains information on all of the 
native Tcl commands available in 
Vivado Design Suite:

http://www.xilinx.com/support/
documentation/sw_manuals/xil-
inx2013_4/ug835-vivado-tcl-com-
mands.pdf  

 

http://www.knowres.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_4/ug894-vivado-tcl-scripting.pdf
https://github.com/
https://github.com/Xilinx/XilinxTclStore
https://github.com/Xilinx/XilinxTclStore/wiki/Xilinx-Tcl-Store-Home
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_4/ug835-vivado-tcl-commands.pdf
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What’s New in the
Vivado 2014.1 Release?
Xilinx is continually improving its products, IP and design tools as it strives to help designers 
work more effectively. Here, we report on the most current updates to Xilinx design tools including 
the Vivado® Design Suite, a revolutionary system- and IP-centric design environment built from 
the ground up to accelerate the design of  Xilinx® All Programmable devices. For more information 
about the Vivado Design Suite, please visit www.xilinx.com/vivado.

Product updates offer significant enhancements and new features to the Xilinx design tools.  
Keeping your installation up to date is an easy way to ensure the best results for your design. 

The Vivado Design Suite 2014.1 is available from the Xilinx Download Center at www.xilinx.com/
download.

XILINX Tcl STORE

Xilinx is taking another large step for-
ward in designer productivity by hosting 
an open-source repository for sharing 
Tool Command Language (Tcl) code. 
This repository, called the Xilinx Tcl 
Store, will make it a lot easier to find and 
share Tcl scripts that other engineers 
have developed. With the power of Tcl, 

these scripts can extend the consider-
able core functionality of the Vivado 
Design Suite, enhancing productivity 
and ease of use. The Tcl Store is open to 
the user community to contribute to the 
greater good of all designers by publish-
ing Tcl code that others might find useful.

The Xilinx Tcl Store provides exam-
ples of how to write custom reports, 
control specific tool behavior, make 

XTRA, XTRA

custom netlist changes and integrate 
with third-party electronic design au-
tomation (EDA) tools such as simu-
lation, synthesis, timing and power 
analysis, and linting tools. Natively ac-
cessed from the Vivado Integrated De-
sign Environment (IDE), the Tcl Store 
enables users to select and install col-
lections of Tcl scripts called “apps” 
directly from within the tool. Once 
installed, these apps have commands 
that appear just like built-in Vivado 
Design Suite commands. 

To learn more about the new Xilinx 
Tcl Store, watch the QuickTake video at 
http://www.xilinx.com/training/vivado/
introduction-to-the-xilinx-tcl-store.htm.

VIVADO DESIGN SUITE: 
DESIGN EDITION UPDATES

Vivado Implementation Tools  
Performance and run-time improvements:

•  Average 25 percent faster overall 
implementation run-time compared 
to 2013.4

•  Average 2.5 percent better Fmax on  
7 Series SSIT devices

•  Average 5 percent improvement in 
Fmax across all devices.

VIVADO DESIGN SUITE 2014.1 RELEASE HIGHLIGHTS 
Vivado Design Suite 2014.1 increases your productivity with faster run-times, im-
proved quality of results, automation of the UltraFast™ Design Methodology and 
hardware acceleration of OpenCL kernels through Vivado high-level synthesis (HLS).

DEVICE SUPPORT

Production Ready:
• Artix®-7  XC7A35T and XC7A50T
• XA Artix-7 XA7A50T, XA7A35T and XA7A75T
• Zynq®-7000 XC7Z015

General Access: 
Kintex® UltraScale:
• XC KU035, XC KU040, XC KU060 and XC KU075

Early Access (contact local sales rep): 
Kintex UltraScale SSI devices:
• XC KU100 and XC KU115

Virtex® UltraScale devices:
• XC VU065, XC VU080, XC VU095, XC VU125, XC VU145 and XC VU160

http://www.xilinx.com/download
http://www.xilinx.com/training/vivado/introduction-to-the-xilinx-tcl-store.htm
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Integrated Design Environment
Timing Constraints Wizard: An automat-
ed tool that guides users to create timing 
constraints for clocks, I/O and clock do-
main crossing constraints. Intelligence 
built into the wizard queries the Vivado 
Design Suite’s design database to extract 
the clocking structure as well as existing 
constraints, often coming from IP reuse, 
then guides the user to correctly con-
strain the rest of the design.

To learn more about the new Timing 
Constaints Wizard, watch the Quick-
Take video at http://www.xilinx.com/
training/vivado/using-the-vivado-tim-
ing-constraint-wizard.htm.

Vivado IP Integrator 
•  New “Signals” tab allows drag-and-

drop connection, visualization and 
management of clock and reset 
domains in a design.

•  New automated “Board Interface” 
tab allows quick connection to 
interfaces available on supported 
development boards.

•  Designer Assistance now provides 
an option for users to specify a 
clock domain instead of assuming a 
default domain.

Tandem Configuration  
for Xilinx PCIe IP 
•  The Tandem Configuration IP core 

has been included within the IP Inte-
grator. This core, which is specifically 
the AXI streaming variant, can be add-
ed to a design within IPI.

•  Support has been added for Zynq®-
7000 All Programmable SoC devices.

•  For more information, see the PCI Ex-
press® IP Product Guides.

VIVADO DESIGN SUITE: 
SYSTEM EDITION UPDATES

Vivado High-Level Synthesis    
Vivado HLS now offers early-access 
support of OpenCL kernels. OpenCL 
provides a framework and language for 
writing kernels that execute across het-

erogeneous platforms and can now be 
seamlessly converted to IP running on 
Xilinx All Programmable devices.  

A new linear algebra library enables 
rapid IP generation of C/C++ algorithms 
that require functions such as Cholesky 
decomposition, singular-value decom-
position (SVD), QR factorization and 
matrix multiplication.  

Smoother integration of HLS de-
signs into AXI4 systems occurs 
through new data-packing options that 
automate the alignment of data to 8-bit 
boundaries. Enhanced functionality is 
provided for AXI4 master interfaces as 
the USER ports can now be optionally 
included in the interface.

Improved resource usage is provided 
for designs using division operations. 
These operations now automatically 
benefit from smaller implementations.

System Generator for DSP 
System integration of System Generator 
for DSP blocks is now faster and easier 
with the AXI4-Lite slave interface and 
corresponding software drivers for both 
Linux and bare-metal designs. Verifica-
tion is improved thanks to the support 
for non-memory-mapped interfaces in 
hardware co-simulation.

Plug-and-Play IP Updates
Vivado 2014.1 provides increased quality 
and features for UltraScale™ GT-based IP:

•  GT Wizard queries the device model 
at run-time for accurate physical 
resources and location.

•  All GT-based IP cores call the  
GT Wizard at run-time

•  Clocking and reset resources can be 
easily shared between GT instances.

•  All GT ports can be enabled for debug.

• There is no need to edit any IP file.

Additional new key IP available for Ul-
traScale devices in 2014.1 includes the 
HSSIO Wizard, System Management 
Wizard, SGMII over LVDS, Aurora 8B10B 
and 64B66B, CPRI and Serial RapidIO.

ULTRAFAST DESIGN 
METHODOLOGY

Second Edition of the UltraFast 
Design Methodology     
Xilinx has delivered the first comprehen-
sive design methodology in the program-
mable industry with its UltraFast technol-
ogy. Xilinx hand-picked the best practices 
from experts and distilled them into this 
authoritative set of methodology guide-
lines for the Vivado Design Suite.

Now in its second edition, the Ultra-
Fast Design Methodology Guide extends 
support of the UltraScale architecture, 
adds a new Timing Constraints Wizard 
for rapid timing closure and includes 
new best practices, such as:

•  Design methodology DRCs
•  Revision control
•  IP / IP Integrator methodology
•  Simulation (including third-party flows)
•  Verification

•  Vivado HLS

•  Partial reconfiguration

TAKE THE NEXT STEP

Vivado QuickTake Tutorials  
For more information, watch the What’s 
New in Vivado Design Suite video at 
http://www.xilinx.com/training/viva-
do/whats-new-in-vivado.htm.   

Vivado Design Suite QuickTake vid-
eo tutorials are how-to videos that take 
a look inside the features of the Vivado 
Design Suite. New topics include: Design 
Flow Overview, Using the Timing Con-
straints Wizard, Xilinx Tcl Store, Using 
Vivado with Xilinx Evaluation Boards and 
Packaging Custom IP for use with IP Inte-
grator. See all QuickTake videos at http://
www.xilinx.com/training/vivado.

Vivado Training  
For instructor-led training on the Viva-
do Design Suite, please visit www.xil-
inx.com/training. 

Download Vivado Design Suite 2014.1 
today at http://www.xilinx.com/down-
load. 

http://www.xilinx.com/download.
http://www.xilinx.com/training
http://www.xilinx.com/training/vivado/using-the-vivado-timing-constraint-wizard.htm
http://www.xilinx.com/training/vivado/whats-new-in-vivado.htm
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Latest and Greatest 
from the Xilinx Alliance 
Program Partners

T
he Xilinx® Alliance Program is a worldwide eco-
system of qualified companies that collaborate 
with Xilinx to further the development of All Pro-
grammable technologies. Xilinx has built this eco-

system, which leverages open platforms and standards, 
to meet customer needs and is committed to its long-term 
success. Alliance members—including IP providers, EDA 
vendors, embedded software providers, system integra-
tors and hardware suppliers—help accelerate your de-
sign productivity while minimizing risk. Here are some 
highlights of recent alliance activities.

XPEDITE

XYLON AND NORTHWEST 
LOGIC DELIVER MIPI CSI-2 
CAMERA INTERFACE DEMO 
AT NAB 2014

https://www.youtube.com/
watch?v=aKbkB7WN8CE

The MIPI Display Serial Interface (DSI) 
and Camera Serial Interface 2 (CSI-2) 
are becoming key, low-cost industry 
standards for connecting video displays 
and cameras to a wide variety of em-
bedded systems. You can now leverage 
a MIPI-compatible interface implement-
ed on the Xilinx platform. This low-cost 
way to interface multiple cameras and 
displays greatly enhances the use of 
Xilinx All Programmable devices at the 
heart of diverse Smarter Vision systems 
for all sorts of markets including auto-
motive, industrial and medical. In early 

Xpedite highlights the latest technology updates 
from the Xilinx Alliance partner ecosystem.

April at the NAB 2014 show in Las Ve-
gas, visitors to the Xilinx booth saw the 
demo system based on a Xilinx ZC706 
Zynq SoC Evaluation Kit developed 
by Premier Xilinx Alliance Program 
members Xylon and Northwest Logic.  
Please click on the link above to view a 
short video explaining the demo.

BARCO-SILEX 
DEMONSTRATES 4K 
VIDEO-OVER-IP WITH 
JPEG2000 ON A SINGLE 
KINTEX-7 AT NAB 2014

http://www.barco-silex.com/ip-cores/
jpeg-2000 

Barco-Silex upgraded to 4K its well-
known video-over-Internet Protocol 
(VoIP) reference design that integrates 

JPEG2000 compression and Transport 
Stream solutions with Xilinx SMPTE 
2022 cores on a single Kintex®-7 device. 
Fully compliant with the Video Services 
Forum (VSF) technical recommenda-
tion, this design ensures interopera-
bility with major broadcast industry 
players as it was demonstrated at the 
VidTrans 2014 meeting in Arlington, 
Va., in February and again at NAB 2014 
in April.  This new version of the refer-
ence design combines JPEG2000 com-
pression and flexible MPEG2-TS cores 
from Barco-Silex with the SMPTE2022 
1-2 IP core from Xilinx on a Kintex-7 
FPGA to carry a 4K video stream over 
a 1G network. The 4K video is captured 
via Quad-SDI, and is encoded by the 
high-quality Barco-Silex JPEG2000 en-
coder core. The integrated Barco-Silex 
Transport Stream solution combined 
with the Xilinx SMPTE2022 1-2 core 
provides interoperability thanks to its 
proven compliance with the VSF techni-
cal recommendations.

TOPIC SHOWCASES DYPLO 
SYSTEM AT EMBEDDED 
WORLD 2014 
https://www.youtube.com/watch?v=8S-
1GOcL-t4o 

Premier Alliance member TOPIC Embed-
ded Products has developed an operating 
system that will significantly reduce the 

https://www.youtube.com/watch?v=aKbkB7WN8CE
http://www.barco-silex.com/ip-cores/jpeg-2000
https://www.youtube.com/watch?v=8S1GOcL-t4o
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development time and cost of creating 
products based on FPGA-and-processor 
combinations, such as the Xilinx Zynq®-
7000 All Programmable SoC. The Dyplo 
system’s OS bridges the gap between 
hardware and software design, and 
provides a means to enable a fully soft-
ware-driven development flow. Dyplo 
extensively uses partial reconfigura-
tion, an advanced design technique in 
which the FPGA fabric can (partially 
and selectively) change its hardware 
configuration on the fly. Partial recon-
figuration makes it possible to execute 
different functions by reusing the same 
FPGA fabric over time. Dyplo manag-
es the reconfigurable blocks such that 
functions can be executed as desired, 
either in software or in hardware, de-
pending on the execution context con-
straints, such as power consumption, 
performance and footprint. The link 
above will bring you to a short video 
explaining the demo.

DAVE EMBEDDED SYSTEMS 
FEATURES BORA SOM AT 
EMBEDDED WORLD 2014

http://www.xilinx.com/alliance/mem-
berlocator/1-33H1QG.htm  

The Italian company DAVE Srl show-
cased BORA, a system-on-module (SoM) 
equipped with Xilinx Zynq XC7Z010 and 
XC7Z020 devices, at Embedded World 
2014 in Nuremburg, Germany, in Feb-
ruary. The key benefits for customers 
are the shortened development time, 
lower costs and reduced engineering 
resources that come with using a com-
pact and integrated one-chip solution 
that includes both a CPU (the onboard 
ARM® Cortex™-A9 processor) and an 
FPGA.  Customers also avoid manufac-
turing complexities with DAVE’s SoM 
solution. Additionally, BORA has both 
Linux and a real-time operating system 
(RTOS) running simultaneously on the 
same SoC. See this application note for 
more details: http://www.dave.eu/
sites/default/files/files/an-belk-001-
amp-li-nux-freertos.pdf.

INTERFACE CONCEPT’S 
MTCA.4 VIRTEX-7 AMC 
MODULE SELECTED BY 
SLAC FOR ACCELERATOR 
DIAGNOSTICS

http://www.gomaelettronica.it/en.html  

Diagnostics and beam control in 
high-energy physics require ever 
higher signal-processing power. The 
high-energy physics community has 
defined a new MTCA.4 standard that 
specifies extensions to MicroTCA 
to support uRTM applications. The 
SLAC National Accelerator Laborato-
ry in Menlo Park, Calif., has selected a 
module from Alliance Program mem-
ber Interface Concept for assisting 
in the diagnostics of high-speed par-
ticles. In partnership with Deutsches 
Elektronen-Synchrotron (DESY), In-
terface Concept has developed a new 
Virtex®-7 MTCA.4 and a four-channel, 
1,300-Msps 12-bit resolution ADC 
FPGA mezzanine card (FMC) with a 
sophisticated clock system that al-
lows for synchronization (up to eight 
channels using two FMCs). 

The MTCA.4 carrier features a Vir-
tex-7 VX690T (Speed Grade -2) with 
3.25 Gbytes of DDR3 memory running 
at 1,600 MT/s (spread on two banks) 
and a QSPI flash. Each HPC FMC inter-
face, compliant with VITA 57, provides 
eight GTH transceivers and 80 LVDS 
lanes. The fabric links are composed of 
16 GTH transceivers and the uRTM in-
terface provides four GTH transceivers 
and 38 LVDS lanes. Onboard memories 
allow you to store up to three selectable 
FPGA images. A module Management 
Controller Unit carries out the onboard 
power and temperature monitoring, 
Virtex-7 configuration and IPMI inter-
face (MMC v1.0 compliant). Addition-
ally, Interface Concept provides VHDL 
code for system services and reference 
designs such as PCIe DMA engines, sig-
nal capture and processing. Example 
code is available for each FPGA inter-
face, facilitating design and integration 
for customers. 
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Application Notes
If you want to do a bit more reading about how our 
FPGAs lend themselves to a broad number of applications, 
we recommend these application notes.

XAPP1177: DESIGNING WITH SR-IOV CAPABILITY 
OF XILINX VIRTEX-7 PCI EXPRESS GEN3 
INTEGRATED BLOCK
http://www.xilinx.com/support/documentation/applica-
tion_notes/xapp1177-pcie-gen3-sriov.pdf

Evaluating single-root I/O virtualization (SR-IOV) capabil-
ity can be a complex process, with many variations seen 
among different operating systems and system platforms. 
In demonstrating the SR-IOV capability of the Xilinx® 
Virtex®-7 FPGA PCI Express® Gen3 integrated block, this 
application note establishes a baseline system configura-
tion and provides the necessary software to quickly bring 
up and evaluate the SR-IOV features of the Virtex-7 FPGA 
PCIe® Gen3 integrated block. 
 Author Vivek Surabhi explains the key concepts of SR-
IOV and details how to configure the SR-IOV capability. 
The document shows how to create a PCI Express x8 Gen3 
endpoint design configured for two physical functions and 
six virtual functions. The reference design, which targets 
a Virtex-7 FPGA VC709 Connectivity Kit, has been hard-
ware-validated on a system with SR-IOV capability.

XAPP1171: PCI EXPRESS ENDPOINT-DMA 
INITIATOR SUBSYSTEM
http://www.xilinx.com/support/documentation/applica-
tion_notes/xapp1171-pcie-central-dma-subsystem.pdf

This application note by Brian Martin demonstrates a 
Vivado® Design Suite subsystem for endpoint-initiated 
direct memory access (DMA) data transfers through PCI 
Express. The provided subsystems target the Zynq®-7000 
All Programmable SoC ZC706 and Kintex®-7 KC705 de-
vice to initiate data transfers between DDR3 memory and 
an externally connected PCI Express Root Complex. You 
could modify the subsystem for use in other devices or 
applications that require data transactions to be initiated 
from within the FPGA logic. 

 The application note demonstrates several key features 
of the Vivado Design Suite and the IP cores used in the 
design, starting with generating a block diagram subsys-
tem using Vivado’s Tcl commands and scripting. Other 
areas covered include PCI Express endpoint configura-
tion; DMA-initiated data transfers over PCI Express; and 
achieving high throughput into the Zynq SoC processing 
system through the high-performance AXI interface. The 
author also explores dynamic address translation be-
tween a 64-bit root complex (host) address space and a 
32-bit FPGA (AXI) address space, and outlines a meth-
odology to perform DMA scatter-gather operations using 
dynamic address translation.

XAPP1180: REFERENCE SYSTEM: 
KINTEX-7 MICROBLAZE SYSTEM 
SIMULATION USING IP INTEGRATOR
http://www.xilinx.com/support/documentation/applica-
tion_notes/xapp1180.pdf

This application note and reference system demonstrate 
the functionality of a MicroBlaze™ processor system 
on the Kintex-7 device architecture using the Xilinx IP 
Integrator tool in simulation and in hardware. The sys-
tem includes common peripherals such as main memory 
as well as RS232 communications. Author James Luce-
ro provides several standalone software applications to 
verify the functionality of the peripherals. Applications 
include hello_uart and hello_mem. 
 Lucero also explains how to set up the simulation en-
vironment for the system, execute the simulation using 
either the Vivado simulator or Mentor Graphics’ Model-
Sim® environments, and run the design on hardware. The 
document describes running the design in simulation and 
hardware, targeting the KC705 board that contains the 
Kintex-7 XC7K410TFFG900-2 FPGA.

XAMPLES.. .

http://www.xilinx.com/support/documentation/application_notes/xapp1177-pcie-gen3-sriov.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1171-pcie-central-dma-subsystem.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1180.pdf
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XAPP1158: USING VXWORKS 
BSP WITH ZYNQ-7000
http://www.xilinx.com/support/documentation/applica-
tion_notes/xapp1158-zynq-7000-vxworks-bsp.pdf

Here is a startup guide for new users of VxWorks, the real-time 
operating system (RTOS) from Wind River, on the Zynq-7000 All 
Programmable SoC. Authors Uwe Gertheinrich, Simon George 
and Kester Aernoudt provide step-by-step instructions for run-
ning the VxWorks 6.9.3.1 board support package (BSP) on the 
Zynq SoC, and additionally provide an overview of the boot 
process. The application note starts by explaining the import-
ant elements of the Zynq SoC software environment to provide 
a better understanding of BSP and application generation. The 
authors explain the Zynq SoC processor subsystem boot pro-
cess and describe how to add VxWorks, including building and 
debugging the application as well as remotely running a custom 
application of VxWorks on the Zynq SoC.

XAPP742: AXI VDMA REFERENCE DESIGN
http://www.xilinx.com/support/documentation/applica-
tion_notes/xapp742-axi-vdma-reference-design.pdf

If you’ve ever contemplated building a video system using 
Xilinx native video IP cores to process configurable frame 
rates and resolutions in Kintex-7 FPGAs, this application 
note will show you how. The reference design focuses on 
run-time configuration of an onboard clock generator for a 
video pixel clock, and on using video IP cores such as AXI 
Video Direct Memory Access (VDMA), Video Timing Con-
troller (VTC), test pattern generator (TPG) and the DDR3 
memory controller for running selected combinations of 
video resolution and frame rate. Authors Pankaj Kumbhare 
and Vamsi Krishna discuss the configuration of each video 
IP in detail, helping designers make effective use of these 
cores. Each video IP block is configured dynamically to pro-
cess various combinations of frame rate and resolution.

XAPP1200: KINTEX-7 FPGA TRANSCEIVER 
WIZARD EXAMPLE DESIGN
http://www.xilinx.com/support/documentation/applica-
tion_notes/xapp1200-k7-xcvr-wiz-example-design.pdf

The KC705 Evaluation Kit provides a comprehensive, 
high-performance development and demonstration plat-
form using the Kintex-7 FPGA family for high-bandwidth 
and high-performance applications in multiple market seg-
ments. This application note by Dinesh Kumar and Thupalli 
Ramachandra uses the KC705 kit and the GTX Transceiver 
Wizard to demonstrate a transceiver example design run-
ning on Kintex-7 FPGA hardware. The authors have fully 
verified the reference design and tested it on hardware.

XAPP1202: SYSTEM TRAFFIC GENERATION AND 
PERFORMANCE MEASUREMENT
http://www.xilinx.com/support/documentation/applica-
tion_notes/xapp1202-sys-tg-pm.pdf

In this application note, authors Kondalarao Polisetti and 
Pankaj Kumbhare demonstrate AXI4 system traffic genera-
tion and performance measurement using two Xilinx cores: 
the AXI Traffic Generator (ATG) and the AXI Performance 
Monitor (APM). The accompanying reference design focus-
es on run-time configuration for different instances of ATG 
and APM, and shows how to configure and program these IP 
cores to get the system performance metrics. The reference 
design also shows the run-time system throughput and la-
tency of the system for different configurations using a Web 
server application. The authors used the Vivado Design Suite 
2013.4 to successfully place and route the interface at 100 
MHz on the main AXI4 interfaces to the memory controller.

XAPP1199: SMPTE 2022-5/6 HIGH-BIT-RATE MEDIA 
TRANSPORT OVER IP NETWORKS WITH FORWARD 
ERROR CORRECTION
http://www.xilinx.com/support/documentation/applica-
tion_notes/xapp1199-smpte2022-56-over-ip.pdf

Here’s a video-over-IP network system that leverages the 
performance features of the LogiCORE™ IP SMPTE 2022-5/6 
video-over-IP transmitter and receiver cores. The reference 
design by authors Gilbert Magnaye, Josh Poh, Myo Tun Aung 
and Tom Sun focuses on high-bit-rate, native media transport 
over 10-Gbps Ethernet with a built-in forward error correc-
tion (FEC) engine. The design is able to support up to three 
SD/HD/3G-SDI streams. 
 The transmitter platform uses three SMPTE SDI cores 
to receive the incoming SDI video streams. The received 
SDI streams are multiplexed and encapsulated into fixed-
size datagram packets by the SMPTE 2022-5/6 video-over-
IP transmitter core and sent using the 10-Gigabit Ethernet 
MAC core. The 10-Gbit link is supported by a 10-Gigabit 
Ethernet PCS/PMA core using an optical cable connected 
to the receiver end. On the receiver platform, the 10-Giga-
bit Ethernet MAC collects the Ethernet datagram packets. 
The SMPTE 2022-5/6 video-over-IP receiver core filters the 
datagram packets, and de-encapsulates and demultiplexes 
the datagrams into individual streams, then outputs those 
streams through the SMPTE SDI cores. The Ethernet da-
tagram packets are buffered in DDR3 SDRAM for both the 
transmitter and receiver. 
 The DDR traffic passes through the AXI4 interconnect to 
the 7 series AXI memory controller. A MicroBlaze processor 
initializes the cores and reads the status. The reference design 
targets the Xilinx Kintex-7 FPGA KC705 Evaluation Kit. 

http://www.xilinx.com/support/documentation/application_notes/xapp1158-zynq-7000-vxworks-bsp.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp742-axi-vdma-reference-design.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1200-k7-xcvr-wiz-example-design.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1202-sys-tg-pm.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1199-smpte2022-56-over-ip.pdf


Xpress Yourself 
in Our Caption Contest

Spring is in the air, even if your garden grows indoors. Xercise your 
funny bone as you tend your posies by submitting an engineering- 
or technology-related caption for this cartoon showing a couple of  

engineers watering their plants. The image might inspire a caption like 
“Once they cut static power and dynamic power in their design, Ernie and 
Frank decided to experiment with Flower Power.” 

Send your entries to xcell@xilinx.com. Include your name, job title, compa-
ny affiliation and location, and indicate that you have read the contest rules at 
www.xilinx.com/xcellcontest. After due deliberation, we will print the submis-
sions we like the best in the next issue of Xcell Journal. The winner will receive 
a Digilent Zynq Zybo board, featuring the Xilinx® Zynq®-7000 All Programma-
ble SoC (http://www.xilinx.com/products/boards-and-kits/1-4AZFTE.htm). 
Two runners-up will gain notoriety, fame and a cool, Xilinx-branded gift from 
our swag closet. 

The contest begins at 12:01 a.m. Pacific Time on April 16, 2014. All entries 
must be received by the sponsor by 5 p.m. PT on June 30, 2014.

So, put down your trowel and get writing!

NO PURCHASE NECESSARY. You must be 18 or older and a resident of the fifty United States, the District of Columbia, or Canada (excluding Quebec) to enter. Entries must be entirely original. Contest begins on  
April 16, 2014. Entries must be received by 5:00 pm Pacific Time (PT) on June 30, 2014. Official rules are available online at www.xilinx.com/xcellcontest. Sponsored by Xilinx, Inc. 2100 Logic Drive, San Jose, CA 95124.

PAUL McFARTHING, development 
engineer at Smith & Nephew  

(Andover, Mass.), won a shiny new 
Digilent Zynq Zybo board with this 
caption for the tattooed engineer  

in Issue 86 of Xcell Journal:

“I told you we didn’t have to worry 
about the skin effect.” 

Congratulations as well to  
our two runners-up:

“Wearable computing is so passé. 
This is the real future of  
embedded computing.”

 — Chris Lee, technical leader,  

Cisco Systems (San Jose, Calif.)

 
“Looks great, huh? Only three  

ECOs, too. New personal record.”

— David Riley, principal hardware 
engineer, Mantaro Networks  

(Philadelphia)
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