
www.xilinx.com/xcell

32

S O L U T I O N S F O R A P R O G R A M M A B L E W O R L D

ISSUE 87, SECOND QUARTER 2014

Xilinx’s SDNet Enables
‘Softly’ Defined Networks

UltraScale Architecture Advances
Wireless Radio Applications

How to Use Interrupts
on the Zynq SoC

Xilinx Opens a Tcl Store

What’s New in Vivado 2014.1?

Motor Drives
Migrate to Zynq SoC
with Help from
MATLAB

http://www.xilinx.com/xcell

© Avnet, Inc. 2014. All rights reserved. AVNET is a registered trademark of Avnet, Inc.
Xilin, Zynq and Vivado are trademarks or registered trademarks of Xilinx, Inc.

Avnet Electronics Marketing introduces a new global series of Xilinx®

SpeedWay Design Workshops™ for designers of electronic applications

based on the Xilinx Zynq®-7000 All Programmable (AP) SoC Architecture.

Taught by Avnet technical experts, these one-day workshops combine

informative presentations with hands-on labs, featuring the ZedBoard™

and MicroZed™ development platforms. Don’t miss this opportunity

to gain hands-on experience with development tools and design

techniques that can accelerate development of your next design.

em.avnet.com/xilinxspeedways

Featuring MicroZed™, ZedBoard™ & the Vivado® Design Suite

Xilinx® SpeedWay
 Design Workshops™

em.avnet.com/xilinxspeedways

Designs come in all sizes. Choose a prototyping system that does too.
HAPS-DX, an extension of Synopsys’ HAPS-70 FPGA-based prototyping
product line, speeds prototype bring-up and streamlines the integration of
IP blocks into an SoC prototype.

To learn more about Synopsys FPGA-based prototyping systems,
visit www.synopsys.com/haps

 Announcing
HAPS Developer eXpress Solution

¨	500K-144M ASIC gates

¨	Ideal for IP and Subsystem
Validation

¨	Design Implementation and
Debug Software Included

¨	Flexible Interfaces for FMC
and HapsTrak

¨	Plug-and-play with
HAPS-70

ü
ü

ü

ü

ü

Pre-integrated hardware and software for fast prototyping of complex IP systems

http://www.synopsys.com/haps

L E T T E R F R O M T H E P U B L I S H E R

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124-3400
Phone: 408-559-7778
FAX: 408-879-4780
www.xilinx.com/xcell/

© 2014 Xilinx, Inc. All rights reserved. XILINX,
the Xilinx Logo, and other designated brands included
herein are trademarks of Xilinx, Inc. All other trade-
marks are the property of their respective owners.

The articles, information, and other materials included
in this issue are provided solely for the convenience of
our readers. Xilinx makes no warranties, express,
implied, statutory, or otherwise, and accepts no liability
with respect to any such articles, information, or other
materials or their use, and any use thereof is solely at
the risk of the user. Any person or entity using such
information in any way releases and waives any claim it
might have against Xilinx for any loss, damage, or
expense caused thereby.

PUBLISHER Mike Santarini
mike.santarini@xilinx.com
408-626-5981

EDITOR Jacqueline Damian

ART DIRECTOR Scott Blair

DESIGN/PRODUCTION Teie, Gelwicks & Associates
1-800-493-5551

ADVERTISING SALES Dan Teie
1-800-493-5551
xcelladsales@aol.com

INTERNATIONAL Melissa Zhang, Asia Pacific
melissa.zhang@xilinx.com

Christelle Moraga, Europe/
Middle East/Africa
christelle.moraga@xilinx.com

Tomoko Suto, Japan
tomoko@xilinx.com

REPRINT ORDERS 1-800-493-5551

Xcell journal

www.xilinx.com/xcell/

Here’s to 30 Years of Innovation
and to Many Decades More

Xilinx celebrated its 30th anniversary in February. As someone who is a relative new-
comer, having joined the company in 2008, I find it remarkable how far and fast
Xilinx and the devices we make have advanced in just the last six years. I can’t imag-

ine what it must be like for the employees who have been with the company essentially from
the beginning, when Xilinx was a tiny startup on Hamilton Avenue in San Jose offering what
to many seemed like a crazy technology with an even crazier business model.

FPGAs and the fabless semiconductor business model are mainstays of the industry
today, but back in 1984 that wasn’t the case. Years ago, I had the pleasure of interviewing
Bill Carter, who in the Xilinx world is a bit of a living legend, having laid out the industry’s
very first FPGA, the XC2064, and later becoming Xilinx’s first CTO. Of the many great
recollections Bill shared regarding his years at Xilinx, one of the most memorable was the
story of his job interview with Xilinx’s co-founders: Ross Freeman (who invented the
FPGA), Bernie Vonderschmitt and Jim Barnett. Basically, the founders laid out their plans
to come up with a reprogrammable device and have it manufactured by Seiko-Epson.

“I took one look at the architecture and thought they were nuts,” said Carter. “Back then,
silicon real estate was precious and their new circuit structure took so many transistors to
implement. But the idea of being able to reprogram the hardware was revolutionary.”

The business model was sort of nuts too for that time. Back in 1984, everyone manufac-
tured their own chips and the biggest barrier to entry into the business was securing enough
funding to build a factory. Carter recalled that Vonderschmitt knew manufacturing from his
days at RCA and could call on his friends at Seiko (to whom he had shown the silicon-man-
ufacturing ropes while working at RCA) to produce the chips.

So here was Bill Carter, with a young family and a mortgage to pay, working a solid job
for established Zilog, creator of the Z80. He walked away to take a chance with Xilinx. The
rest is history. Xilinx introduced FPGAs to the world in 1985, and years later the fabless
model under the leadership of TSMC became the mainstream way to produce chips.

What I realize 30 years after the fact is that while many personalities have come and gone
and shaped the character of Xilinx, the risk-taking, innovative spirit that launched the com-
pany is still thriving here. In the last six years, I’ve been an eyewitness to Xilinx gaining a
Generation Ahead lead over the competition at the 28-nanometer node by means of innova-
tive silicon (7 series All Programmable FPGAs, SoCs and 3D ICs) and tools (the Vivado®

Design Suite). What’s more, Xilinx is stretching that lead with first-to-market 20-nm
UltraScale™ devices. And you can count on even bigger innovations coming down the pike
as the era of the FinFET arrives. This pioneering spirit is charged by the remarkable inno-
vations Xilinx customers have created with our chips over the last 30 years. I’m sure we’ll
see even more customer innovations in the decades ahead.

Editor’s Note: If you are interested in reading about the early pioneering years of Xilinx and the

fabless industry, I recommend this great piece, “Xilinx and the Birth of the Fabless Semiconductor

Industry,” written by Xcell Daily’s editor, Steve Leibson. If you want to keep up to date with the

future Xilinx innovations, please keep reading and contributing great technical content to Xcell
Journal—now proudly in our 26th year of publishing.

Mike Santarini
Publisher

http://forums.xilinx.com/xlnx/attachments/xlnx/Xcell/200/1/Fabless Book Chapter FINAL.pdf
http://www.xilinx.com/xcell/
http://www.xilinx.com/xcell/
mailto:mike.santarini@xilinx.com
mailto:xcelladsales@aol.com
mailto:melissa.zhang@xilinx.com
mailto:christelle.moraga@xilinx.com
mailto:tomoko@xilinx.com

n Is DDR4 the last SDRAM protocol? Yes, says SemiWiki’s Eric Esteve. Then what are the alternatives?

n Access memory-mapped devices in Linux without writing drivers on the Zynq®-based ZedBoard

n Jan Gray’s New LUT Math: How many 32-bit RISC CPUs fit in an FPGA? Now vs. 1995?

n For Zynq SoC Developers: Latest version of ARM® Cortex™-A Programmer’s Guide just published. Download now!

n XIMEA CB200 5K digital video camera pumps 1.7Gbytes/sec down a 300M optical cable using FPGA-based PCIe

http://forums.xilinx.com/t5/Xcell-Daily-Blog/Is-DDR4-the-last-SDRAM-protocol-Yes-says-SemiWiki-s-Eric-Esteve/ba-p/434360
http://forums.xilinx.com/t5/Xcell-Daily-Blog/Access-memory-mapped-devices-in-Linux-without-writing-drivers-on/ba-p/432496
http://forums.xilinx.com/t5/Xcell-Daily-Blog/Jan-Gray-s-New-LUT-Math-How-many-32-bit-RISC-CPUs-fit-in-an-FPGA/ba-p/432478
http://forums.xilinx.com/t5/Xcell-Daily-Blog/For-Zynq-Developers-Latest-version-of-ARM-Cortex-A-Programmer-s/ba-p/432122
http://forums.xilinx.com/t5/Xcell-Daily-Blog/XIMEA-CB200-5K-digital-video-camera-pumps-1-7Gbytes-sec-down-a/ba-p/432042
http://forums.xilinx.com/t5/Xcell-Daily-Blog/bg-p/Xcell

C O N T E N T S

VIEWPOINTS

Letter From the Publisher

Here’s to 30 Years of Innovation
and to Many Decades More… 4

XCELLENCE BY DESIGN
APPLICATION FEATURES
Xcellence in Wireless

Xilinx’s 20-nm UltraScale
Architecture Advances Wireless
Radio Applications…14

Xcellence in Industrial

Angle Measurement Made
Easy with Xilinx FPGAs and a
Resolver-to-Digital Converter…24

Xcellence in Industrial

Motor Drives Migrate to Zynq SoC
with Help from MATLAB…32

Cover Story

8 Xilinx’s New SDNet Environment
Enables ‘Softly’ Defined Networks

32

S E C O N D Q U A R T E R 2 0 1 4 , I S S U E 8 7

THE XILINX XPERIENCE FEATURES
Xplanation: FPGA 101

How to Use Interrupts
on the Zynq SoC… 38

Xplanation: FPGA 101

Calculating Mathematically
Complex Functions… 44

Xplanation: FPGA 101

Make Slow Software Run
Fast with Vivado HLS… 50

Tools of Xcellence

Xilinx Opens a Tcl Store… 54

XTRA READING
Xtra, Xtra The latest Xilinx tool updates and patches,
as of April 2014… 60

Xpedite Latest and greatest from the Xilinx Alliance
Program partners… 62

Xamples A mix of new and popular
application notes… 64

Xclamations Share your wit and wisdom by supplying
a caption for our wild and wacky artwork… 66

38

54

44

Excellence in Magazine & Journal Writing
2010, 2011

Excellence in Magazine & Journal Design
2010, 2011, 2012

C O V E R S T O R Y

 8 Xcell Journal Second Quarter 2014

Xilinx’s New SDNet
Environment Enables
‘Softly’ Defined
Networks

C O V E R S T O R Y

 Second Quarter 2014 Xcell Journal 9

With Xilinx technology,
design teams can now
build a line card on a chip
and tailor their hardware
for specific network
services and applications.

by Mike Santarini
Publisher
Xcell Journal
Xilinx, Inc.
mike.santarini@xilinx.com

At a time when communications architectures are
rapidly evolving, driven by consumer demand for
greater bandwidth and better, more reliable and se-
cure services, Xilinx has innovated a game-chang-
ing technology and design approach that will en-
able its customers to quickly produce and upgrade
next-generation line cards for wired and wireless
networks as well as data centers. The new technol-
ogy is SDNet, a software-defined specification envi-
ronment. When used with Xilinx® All Programmable
FPGAs and SoCs, SDNet allows communications
design groups to apply a revolutionary approach
that Xilinx calls “Softly” Defined Networks to the
design and upgrade of line cards for the next gen-
eration of software-defined network architectures.

FROM FIXED NETWORKS TO SDN
The communications architectures of the past 20
years have mainly comprised fixed control and data
planes that didn’t expand as network requirements
evolved, said Nick Possley, vice president of commu-
nications IP and services at Xilinx. This rigid architec-
ture required carriers to replace equipment frequent-
ly if they wanted to expand network functionality
and increase overall bandwidth. The line cards at the
heart of these systems were largely based on a mix
of highly specialized ASICs, ASSPs and memory ICs.
FPGAs served to accelerate and bridge communica-
tions among the chips on the line card.
 As the pace of demand quickened, carriers and the
communications systems companies that serve them
sought better alternatives. In the last few years, they
have turned to software-defined networks (SDN)
and network functions virtualization (NFV). These
architectures separate the control and data planes,
and add more software virtualization to the control

A

C O V E R S T O R Y

 10 Xcell Journal Second Quarter 2014

system vendors are forced to compete
on lowest pricing to carriers.

On the surface, one would think the
carriers would love this lower equip-
ment pricing. But in reality, fixed da-
ta-plane designs even in ASSP-based
SDN architectures are still so rig-
id that carriers will have to make
expensive in-field line-card swaps
when they find out the ASSP’s fixed
hardware functionality can’t accom-
modate ever-changing applications,
protocol updates and new feature re-
quirements. These line-card swaps
require networks to shut down while
technicians remove obsolete cards and
install new ones. What’s more, ASSP
vendors tend to overbuild the func-
tionality of their designs in an attempt
to address a broad number of markets
with a single device. As a result, these
ASSP-based line cards tend to be pow-
er hungry and thus run hot, so carriers
must take extra measures to keep the
equipment cool. The cost of cooling,
of course, adversely affects operating
expenditures and further cuts into a
carrier’s bottom-line profitability.

A BETTER SOLUTION: SOFTLY
DEFINED NETWORKS
With SDNet and Xilinx’s revolution-
ary softly defined network approach,
communications systems companies
can develop integrated, low-power, All
Programmable line cards that boast
far more than a software-defined con-
trol plane with network intelligence
required by SDN architectures. This
new technology will also let vendors
differentiate their systems with soft-
ware-defined data-plane hardware
that has content intelligence, mean-
ing that design teams can tailor the
hardware to the exact network ser-
vices and applications their systems
require (Figure 2).
 Traditionally, network architects
(who typically don’t have hardware
design backgrounds) express the re-
quirements of particular protocols in
English-language descriptions, such as
Internet requests for comment (RFCs)
or ISO standards documents.

They then have to rely on specialized
engineers who are very well-versed in the
underlying architecture of the target de-
vice to manually turn those requirements
into low-level, implementation-specific,
descriptions (typically using highly spe-
cialized microcode). These hardware
engineers will either specify how the gen-
eral-purpose processors or specialized
network processors should perform the
packet processing, or they will design the
functionality into a custom ASIC.

Network design teams then have to
verify that hardware achieves the ar-
chitect’s original design intent or can
at least accommodate the most recent
version of the protocol they intend
the card to use. If the line card doesn’t
meet the requirements, they have to
repeat the design process until they
get it to work properly. This process
is complicated by the fact that the re-
lationship between the desired speci-
fication and the microcode is not intu-
itive and the underlying architecture
has performance limitations and ca-
pabilities that vary based on the ser-
vices companies are targeting.

plane. As a result, carriers can rapidly
deploy new applications, and network
equipment is easier to upgrade than in
traditional networks. This improves lon-
gevity (and profitability) and simplifies
network management (Figure 1).
 But Possley said that even the most
recent SDN and NFV architectures are
too rigid in that the data planes are
not programmable and the designs
typically are based on off-the-shelf
ASSPs. The line cards at the heart of
the network use discrete off-the-shelf
packet-processor and traffic-manag-
er ASSPs connected to optics, along
with coprocessors and external mem-
ory. The cards also include FPGAs to
accelerate communications among all
of these chips.

The latest versions of ASSPs that
various chip makers have created for
SDN and NFV architectures do comply
with SDN specifications. But because
the suppliers make the same ASSPs
generally available to all network sys-
tems companies, these chips provide no
competitive product differentiation or
feature expansion. As a result, network

Figure 1 – Today’s software-defined networks separate the control and data planes but still
have fixed data planes, minimal differentiation and short life cycles.

C O V E R S T O R Y

 Second Quarter 2014 Xcell Journal 11

SDNet’s softly defined network ap-
proach goes to the root of this prob-
lem and allows network system design
teams to quickly design line cards that
are correct by construction. In partic-
ular, SDNet focuses on automating the
most complex aspect of line card de-
sign—namely, the design and program-
ming of the packet-processor and traf-
fic-manager functions in modern line
cards (Figure 3).

Instead of having two separate,
discrete ASSPs handling these func-
tions, network systems teams can
integrate packet processing and traf-
fic management as well as other line
card functionality on a single Xilinx
All Programmable FPGA or SoC. They
can ensure they are creating optimal
implementations for their targeted ap-
plications. In addition to integrating
the functionality of many chips into
one All Programmable device, SDNet

streamlines the creation of a high-lev-
el behavioral specification of the line
card and automatically generates RTL
blocks for implementation in Xilinx All
Programmable devices, firmware and a
validation testbench.

“With SDNet, system architects speci-
fy the ‘what,’ not the ‘how,’” said Possley.
“System architects specify the exact
services they are looking to deploy
without regard as to how they are being
deployed in the underlying silicon.”

In the SDNet flow, system architects
define line-card functionality using
a high-level functional specification
(Figure 4). SDNet allows architects
to describe the required behavior of
various types of packet-processing en-
gines, including parsing, editing, search
and quality-of-service (QoS) policy en-
gines. Architects can describe engines
hierarchically in terms of simpler sub-
engines that they can interconnect and

arrange into packet data flows. These
subengines can include user-provid-
ed engines. The SDNet specification
environment contains no implementa-
tion details. That gives customers the
freedom to scale the performance and
resources of their design without the
need to understand the details of the
underlying architecture. The SDNet
specifications are also not limited to
any specific network protocols.

Possley said that SDNet is simple,
and the select few customers with
whom Xilinx beta tested it have found
it very intuitive and easy to use. “It dra-
matically cuts the amount of code they
have to produce into a simple and in-
tuitive specification and is, therefore,
orders-of-magnitude less effort com-
pared with microcoding a network
processor,” he said.

Once architects have finished defining
the system engines and flows in the SD-

Figure 2 – SDNet brings flexibility and automation to the data plane, enabling a softly defined
network approach for the design and upgrade of next-generation networks.

C O V E R S T O R Y

 12 Xcell Journal Second Quarter 2014

Net specification environment, they pro-
vide SDNet’s compiler with throughput
and latency requirements and run-time
programmability requirements that influ-
ence the optimized hardware architecture
generated by the compiler. They then ex-
ecute a command, and SDNet’s compiler
automatically generates the RTL for the
hardware blocks the design requires. The
compiler also generates firmware and a
verification/validation testbench. The SD-
Net design environment includes integra-
tion of Xilinx-optimized SmartCOREs for
networking and LogiCOREs™ for con-
nectivity, external memory control and
embedded processors.

After compilation, network engi-
neers can then finish the implementa-
tion of the design in the Vivado® Design
Suite using the IP Integrator (IPI) tool.
They first use the Vivado tools and IPI to
transform the RTL architecture descrip-
tion the SDNet compiler has generated
into an optimized Xilinx FPGA imple-
mentation. They can then integrate any
additional line-card functionality into
the FPGA, given sufficient resources on
the device they’ve selected, essentially

Figure 3 – With SDNet, companies can create a highly integrated All Programmable line cards.

Figure 4 – The SDNet-based implementation flow enables correct-by-construction
design of an All Programmable line card.

C O V E R S T O R Y

 Second Quarter 2014 Xcell Journal 13

creating an All Programmable line card
on a chip.

What’s more, SDNet generates data
for functional verification and valida-
tion to guide correct-by-construction
design. Specifically, SDNet’s compiler
accepts a collection of test packets for
testing input and output of the design.
Architects can use the packets in the
specification-definition phase of the
process to ensure they are creating an
accurate interpretation of the SDNet
description. Network engineers can
use test packets during the simulation
of the RTL description generated by
the SDNet compiler. Last but not least,
the packets can help with hardware
validation of the final implementation
of the design using network test equip-
ment. In addition, SDNet will generate
corresponding contents for search
engine lookup tables. This verifica-
tion-and-validation ability vastly re-
duces design time and eliminates iter-
ations between system architects and
network hardware engineers, allowing
the teams to get highly differentiated
products to market faster.

Gordon Brebner, distinguished engi-
neer at Xilinx, said the compiler auto-
matically generates custom firmware
operations and their binary encodings
for each individual component in the
architecture. “This gives architects an
intimate level of control over the pro-
cessing,” he said. SDNet has a utility
that keeps a record of runs and stores
details of the generated architecture
and its firmware. When users rerun
the compiler with an updated SDNet
description as input, it determines
whether the change can be accom-
modated with a firmware update only
(without generation of new hardware),
or whether a regeneration of the hard-
ware (and firmware) is needed. In
most cases, medium-scale updates,
such as adding or subtracting a pro-
tocol the line card will handle, can be
done through firmware updates only.

“The intimate connection between
the firmware and the architecture,
which are both generated by SDNet’s

compiler, means that users can per-
form hitless upgrades, whereby the
firmware is changed and placed into
service without disrupting the flow of
packets,” said Brebner. “In this way,
companies can perform significant
service upgrades without any interrup-
tion to the service. This revolutionary
development is achieved through the
unique nature of the SDNet technology
and its coupling of high-level specifi-
cations with Xilinx All Programmable
devices” (Figure 5).
 “SDNet’s ability to generate datapath
processing functions that support
hitless, in-service updates is unique,”
said Possley. “Carriers can update
line card components with new fea-
tures or capabilities using a software
controller via standard SDNet APIs.

They can run the updating software
on an embedded soft processor or
on an external processor.” Of course,
if they implemented the design on a
Xilinx Zynq®-7000 All Programma-
ble SoC, he added, they can run the
software on the device’s embedded
ARM® processor.

“SDNet offers full hardware pro-
grammability under software control,
which is why we call it ‘softly’ defined
networking,” Possley said.

For more information on the SDNet
specification environment, including
a video demonstration of SDNet in
action, visit www.xilinx.com/sdnet.
At the same site, you will find an in-
depth white paper entitled “Software
Defined Specification Environment for
Networking (SDNet).”

Figure 5 – After deployment, SDNet allows vendors to update
protocols on line cards without interrupting service.

X C E L L E N C E I N W I R E L E S S

 14 Xcell Journal Second Quarter 2014

Xilinx’s 20-nm
UltraScale Architecture
Advances Wireless
Radio Applications

X C E L L E N C E I N W I R E L E S S

 Second Quarter 2014 Xcell Journal 15

U
pcoming 5G wireless communications sys-
tems will likely be required to support much
wider bandwidths (200 MHz and larger) than
the 4G systems used today, along with large
antenna arrays, enabled by higher carrier fre-

quencies, that will make it possible to build much smaller
antenna elements. These so-called massive MIMO applica-
tions, together with more stringent latency requirements,
will increase design complexity by an order of magnitude.
 At the end of last year, Xilinx announced the 20-nano-
meter UltraScale™ family and the first devices are now
shipping [1,2,3]. This new technology brings many ad-
vantages over the previous 28-nm 7 Series generation,
especially for wireless communications. Indeed, the com-
bination of this new silicon and the tools of the Xilinx®
Vivado® Design Suite [4, 5] is a perfect fit for high-perfor-
mance signal-processing designs such as next-generation
wireless radio applications.

Let’s look at the benefits of the UltraScale devices for
such designs, with a focus on architectural aspects—
specifically, the advantages of the enhancements brought
to the DSP48 slices and Block RAMs for the implementa-
tion of some of the most common functionalities used in
radio digital front-end (DFE) applications. The UltraScale
family offers much denser routing and clocking resources
compared with the 7 Series devices, enabling better device
utilization, especially for high-speed designs. However,
these features do not usually have a direct impact on de-
sign architectures, so we will not address them here.

OVERVIEW OF ENHANCEMENTS
TO ULTRASCALE FABRIC
Moving to 20 nm not only enables the higher integration ca-
pabilities, improved fabric performance and lower power
consumption that come with any geometry node migration,
but the UltraScale 20-nm architecture also includes several
new, greatly enhanced features that directly support DFE
applications. This is especially true for the UltraScale Kin-
tex® devices, which Xilinx has highly tuned to the needs of
this type of design.
 First, these devices contain up to 5,520 DSP48 slices.
That’s almost three times more than the maximum count
of 1,920 available on 7 Series FPGAs (2,020 for the Zynq®-
7000 All Programmable SoC). Higher levels of integration
are therefore possible. For example, you can implement a
complete 8Tx/8Rx DFE system with instantaneous band-
width of 80 to 100 MHz in a single midrange UltraScale
FPGA, while a two-chip solution is necessary on the 7 Se-
ries architecture, with each chip effectively supporting a
4x4 system. For a detailed functional description of such
designs, read the Xilinx white paper WP445, “Enabling
High-Speed Radio Designs with Xilinx All Programmable
FPGAs and SoCs” [6].

Next-generation 5G
systems will be complex
to design. UltraScale
devices have built-in
functionality that will

make the job easier.

by Michel Pecot
Wireless Systems Architect
Xilinx, Inc.
michel.pecot@xilinx.com

X C E L L E N C E I N W I R E L E S S

 16 Xcell Journal Second Quarter 2014

With the thermal constraints imposed
by passively cooled remote radios, the
integration of complex designs into a
single device requires a significant pow-
er reduction to be able to dissipate the
heat. The UltraScale family offers such
a capability, with 10 to 15 percent less
static power compared with 7 Series
devices of the same size, and 20 to 25
percent less dynamic power for similar
designs. Furthermore, Xilinx has also
significantly lowered serdes power con-
sumption in the UltraScale product line.

There is a performance advantage
as well. The slowest-speed-grade Ul-
traScale devices support designs with
clock rates higher than 500 MHz, while
midspeed grade is required for the 7 Se-
ries devices. However, even here, Block
RAMs are still demanding from a timing
perspective, and WRITE_FIRST or NO_
CHANGE modes need to be selected
to reach this kind of performance. You
cannot use READ_FIRST, since it is lim-
ited to around 470 MHz, while 530 MHz
is achievable for the other two modes.
NO_CHANGE is your best choice when-
ever possible, since it also minimizes
the power consumption.

Similarly, the serdes can support
a throughput of up to 12.5 Gbps on
the slowest UltraScale speed grade,
hence enabling the maximum speed of
JESD204B interfacing, which should be
soon available on most DACs and ADCs.
Similarly, the lowest speed grade can
also support the two highest CPRI rates
(rates 7 and 8, with respective through-
puts of 9.8304 and 10.1376 Gbps) as well
as 10GE interfaces, which are common-
ly used in DFE systems.

In addition, the UltraScale Kintex re-

paths. Functions for data multiplex-
ing, especially two-input multiplex-
ers, can benefit from this feature too.
LUT/SRL compression, however, must
be used carefully when targeting high
clock rates. First, you must use the
two flip-flops connected to the O6/
O5 LUT outputs to avoid any timing
issues. For the same reasons, it is rec-
ommended to apply this capability to
related logic only, a strategy that also
has the advantage of limiting routing
congestion.

The clocking architecture and con-
figurable logic block (CLB) also con-
tribute to better device utilization in the
UltraScale devices. Although the CLB
is still based on that of the 7 Series ar-
chitecture, there is now a single slice
per CLB (instead of two), integrating
eight, six-input LUTs and 16 flip-flops.
The carry chain is consequently 8 bits
long and a wider output multiplexer is
available. In addition, Xilinx has also in-
creased the control-set resources (that
is, the clock, clock-enable and reset
signals shared by the storage elements
within a CLB).

However, it is essentially the im-
provements to the DSP48 slice and
Block RAM that have the most impact
on radio design architectures. Let’s look
at them more closely.

BENEFITS OF THE ULTRASCALE
DSP48 SLICE ARCHITECTURE
Figure 1 shows a view of the UltraScale
DSP48 slice (DSP48E2). The top diagram
(labeled “a”) describes the detailed archi-
tecture, while the bottom part (“b”) high-
lights the functional enhancements com-
pared with the 7 Series slice (DSP48E1).

source mix is better suited for radio ap-
plications, which results in a more op-
timal usage of the logic resources. The
DSP-to-logic ratio, especially, is much
more closely in line with what is typical-
ly required for DFE designs. More pre-
cisely, UltraScale Kintex devices have
eight to 8.5 DSP48 slices per 1K lookup
tables (LUTs), while this number is only
around six on 7 Series devices.

Xilinx has also significantly increased
the clocking and routing resources in
the UltraScale architecture. This in-
crease enables higher device utilization,
especially for high-clock-rate designs.
In effect, routing congestion is reduced,
and designers can achieve better design
packing and LUT utilization. In partic-
ular, LUT/SRL compression is more
efficient. This is an interesting fabric
feature that users can exploit to better
pack their designs and consequently op-
timize resource utilization as well as dy-
namic power consumption, which can
be reduced by a factor of up to 1.7 for
the related logic. The principles of LUT/
SRL compression involve using the two
outputs of the LUT6 to pack two dif-
ferent functions in a single LUT. In this
way, you can pack two LUT5s, imple-
menting a logic function or a memory,
into a single LUT6, provided they share
the same inputs or read/write address
for a memory. Similarly, you can pack
two SRL16s into a single LUT6.

This feature is quite useful for
digital radio designs, which usually
integrate many small memories shar-
ing the same address—for instance,
ROMs storing filter coefficients—and
a lot of short delay lines (less than 16
cycles) to time-align different signal

The serdes can support a throughput
of 12.5 Gbps on slowest-speed-grade

devices, enabling the maximum speed of
JESD204B interfacing.

X C E L L E N C E I N W I R E L E S S

 Second Quarter 2014 Xcell Journal 17

 The Xilinx user guide UG579 offers
a comprehensive description of the
DSP48E2 capabilities [7]. The major
enhancements in the UltraScale ar-
chitecture are:

• Xilinx has increased the multiplier
width from 25x18 to 27x18, and the
pre-adder width rises accordingly
to 27 bits.

• You can select the pre-adder input
to be either A or B, and some multi-
plexing logic has been integrated on

GREG/C Bypass/Mask

BCOUT* ACOUT*

ALUMODE

INMODE

CARRYIN

OPMODE

CARRYINSEL

BCIN* ACIN*

* These signals are dedicated routing paths internal to the DSP48E2 column. They are not accessible via general-purpose routing resources.

MULTSIGNIN*

CARRYCASCIN*

MULTSIGNOUT* PCOUT*

CARRYCASCOUT*

Dual B Register

Dual A, D,
and Pre-adder

MULT
27 x 18

A:B

M

C

PCIN*

17-Bit Shift

17-Bit Shift

P

Figure 1 – Architecture of the UltraScale DSP48 slice

output, which allows feeding D±A or
D±B on any of the multiplier inputs
(27-bit or the 18-bit input).

• The pre-adder output can feed both
multiplier inputs (with appropriate
MSB truncation on the 18-bit input),
hence allowing the computation of
(D±A)2 or (D±B)2 for up to 18-bit data.

• A fourth operand is added to the
arithmetic logic unit (ALU), through
the extra W-mux multiplexer, which
can take as input either C, P or a

constant value (defined at FPGA
configuration). This makes it pos-
sible to perform a three-input op-
eration when the multiplier is used,
such as A*B+C+P or A*B+P+PCIN.
It is worth noting that the W-mux
output can only be added within the
ALU (subtraction is not permitted).

• Xilinx has integrated additional log-
ic to perform a wide XOR between
the 96 bits of any two of the X, Y or
Z multiplexer outputs. Four different
modes are actually available, offer-
ing 1x 96-bit, 2x 48-bit, 4x 24-bit or 8x
12-bit XOR operation.

 Increasing the multiplier size from
25x18 to 27x18 has minimal impact
on the silicon area of the DSP48 slice,
but significantly improves the support
for floating-point arithmetic. First, it is
worth pointing out that the DSP48E2
can in effect support up to 28x18-bit or
27x19-bit signed multiplication. This is
achieved by using the C input to pro-
cess the additional bit, as described in
Figure 2, which shows the multiplica-
tion of a 28-bit operand, X, with an 18-
bit operand, Y.

The 45 most significant bits (MSBs)
of the 46-bit output are computed as:

Z[45:1] = X[27:1]*Y[17:0] + X[0]*Y[17:1]

The 27 MSBs of X and 18 bits of Y are

directly fed into the DSP48E2 multipli-
er inputs, while X[0]*Y[17:1] is derived
from an external 17-bit AND operator
and sent to the C input after a single
pipelining stage to match the DSP48E2
latency. The AND operator can actually
be omitted by directly feeding Y[17:1]
into a register with the reset pin con-
trolled by X[0]. Similarly, an external
1-bit AND operator and a three-clock-
cycle delay for latency balancing are
used to compute the LSB of Z, Z[0].

You can therefore implement a
28x18-bit multiplier with a single
DSP48E2 slice and 18 LUT/flip-flop
pairs. The same applies for a 27x19-bit
multiplier, using 27 additional LUT/flip-
flop pairs. In both cases, convergent

A/B Mux on
Pre-adder input

Squaring Mux Wide XOR

Increased
Multiplier Width

W-Mux

B

A

D

C

27 x 18
Multiplier

Pre-adder

Round Cst
Pattern Detector

48-Bit Accumulator/Logic Unit

+/–

(b) DSP48E2 high-level functional view

 (a) Detailed DSP48E2 architecture

X C E L L E N C E I N W I R E L E S S

 18 Xcell Journal Second Quarter 2014

has been recently added to the IEEE
floating-point standard [8]. Basically, it
consists of building the floating-point
operation A*B+C, without explicitly
rounding, normalizing and de-normal-
izing the data between the multiplier
and the adder. These functions are in-
deed very costly when using traditional
floating-point arithmetic and account
for the greatest part of the latency. This
concept may be generalized to build
sum-of-products operators, which are
common in linear algebra (matrix prod-
uct, Cholesky decomposition). Con-
sequently, such an approach is quite
efficient for applications where cost or
latency are critical, while still requiring
the accuracy and dynamic range of the
floating-point representation. This is
the case in radio DFE applications for
which the digital predistortion func-
tionality usually requires some hard-
ware-acceleration support to improve
the update rate of the nonlinear filter
coefficients. You can then build one or
more floating-point MAC engines in the
FPGA fabric to assist the coefficient-es-
timation algorithm running in software
(e.g. on one of the ARM® Cortex™-A9
cores of the Zynq SoC).

For such arithmetic structures, it
has been shown that a slight increase
of the mantissa width from 23 to 26
bits can provide even better accuracy

rounding of the result can still be sup-
ported through the W-mux.

A double-precision floating-point mul-
tiplication involves the integer product
of the 53-bit unsigned mantissas of both
operators. Although a 52-bit value (m)
is stored in the double-precision float-
ing-point representation, it describes the
fractional part of the unsigned mantissa,
and it is actually the normalized 1+m val-
ues, which need to be multiplied togeth-
er; hence the additional bit required by
the multiplication. Taking into account
the fact that the MSBs of both 53-bit op-
erands are equal to 1, and appropriately
splitting the multiplication to optimally
exploit the DSP48E2 26x17-bit unsigned
multiplier and its improved capabilities
(e.g., the true three-input 48-bit adder
enabled by the W-mux), it can be shown
that the 53x53-bit unsigned multiplica-
tion can be built with only six DSP48E2
slices and a minimal amount of external
logic. It is out of the scope of this arti-
cle to provide all the details of such an
implementation, but a similar approach
would require 10 DSP48E1 slices on the
previous-generation 7 Series devices;
hence there is a 40 percent gain brought
by the UltraScale architecture.

The 27x18 multiplier of the DSP48E2
is also very useful for applications
based on fused data paths. The con-
cept of a fused multiply-add operator

compared with a true single-precision
floating-point implementation, but with
reduced latency and footprint. The
UltraScale architecture is again well
adapted for this purpose, since it takes
only two DSP48 slices to build a sin-
gle-precision fused multiplier, whereas
three are required on 7 Series devices
with additional fabric logic.

The pre-adder, integrated within the
DSP48 slice in front of the multiplier,
provides an efficient way to implement
symmetric filters that are commonly
used in DFE designs to realize the dig-
ital upconverter (DUC) and downcon-
verter (DDC) functionality. For an N-tap
symmetric filter, the output samples are
computed as follows:

where x(n) represents the input signal
and h(n) the filter impulse response,
with h(n)= h(N−1− n).

Pairs of input samples are therefore
fed into the pre-adder and the output is
further multiplied with the appropriate
filter coefficient. On the 7 Series archi-
tecture, the pre-adder must use the 30-
bit input (A) of the DSP48E1, together
with the 25-bit input (D), and its output

Sign
Extension

Rounding
Constant

Sign
Extension

DSP48E2

A/B Mux on
Pre-adder input

Squaring Mux Wide XOR

Increased
Multiplier Width

W-Mux

B

A

D

C

27 x 18
Multiplier

Pre-adder

Round Cst
Pattern Detector

48-Bit Accumulator/Logic Unit

+/–

Figure 2 – A 28x18-bit signed multiplication with convergent rounding capability of the output

 Second Quarter 2014 Xcell Journal 19

X C E L L E N C E I N W I R E L E S S

is connected to the 25-bit input of the
multiplier, while the B input is routed to
the 18-bit multiplier input. Consequently,
when building symmetric filters, the co-
efficients cannot be quantized on more
than 18 bits, which limits the stopband
attenuation to around 85 to 90 dB. This
may be an issue for next-generation 5G
radio systems, which are likely to oper-
ate in environments with a very high in-
terference level, and may therefore need
filters with greater attenuation.

The UltraScale architecture over-
comes this problem because the pre-ad-
der input can be selected as either A or
B, and some multiplexing logic has been
integrated on the output to allow feed-
ing D±A or D±B to any of the multiplier
inputs (27-bit or the 18-bit input). As a
consequence, symmetric filters with up
to 27-bit coefficients can be supported.

Another feature Xilinx has added to
the DSP48E2 slice is the capability to
connect the pre-adder output to both
inputs of the multiplier (with appropri-
ate MSB truncation on the 18-bit input).
This makes it possible to perform op-
erations such as (D±A)2 or (D±B)2 for
up to 18-bit data, which can be used
efficiently when evaluating sums of
squared-error terms. Such operations
are quite common in optimization prob-
lems, for example when implementing
least-square solutions to derive the co-
efficients of the equalizer in a modem,
or to time-align two signals.

It is indisputably the addition of
a fourth input operand to the ALU,
through the extra W-mux multiplexer,
which brings the most benefit for radio

applications. This operand can typical-
ly save 10 percent to 20 percent of the
DSP48 requirements for such designs
compared with the same implementa-
tion on a 7 Series device.

The W-mux output can only be add-
ed within the ALU (subtraction is not
permitted), and can be set dynamically
as the content of either the C or P reg-
ister or as a constant value, defined at
FPGA configuration (e.g. the constant to
be added for convergent or symmetric
rounding of the DSP48 output), or sim-
ply forced to 0. This allows performing
a true three-input operation when the
multiplier is used, such as A*B+C+P,
A*B+C+PCIN, A*B+P+PCIN, something
that is not possible with the 7 Series ar-
chitecture. Indeed, the multiplier stage
generates the last two partial-product
outputs, which are then added within
the ALU to complete the operation (see
Figure 1). Therefore, when enabled, the
multiplier uses two inputs of the ALU,
and a three-input operation cannot be
performed on 7 Series devices.

Two of the ost significant examples
that benefit from this additional ALU in-
put are semi-parallel filters and complex
multiply-accumulate (MAC) operators.
Let’s take a closer look at both of them.

OF FILTERS AND MACS
Linear filters are the most common pro-
cessing units of any DFE application.
When integrating such functionality on
Xilinx FPGAs, it is recommended [6],
as far as possible, to implement multi-
channel filters for which the composite
sampling rate (defined as the product of

the number of channels by the common
signal-sampling frequency of each chan-
nel) is equal to the clock rate at which
the design is running. In a so-called
parallel architecture, each DSP48 slice
supports a single filter coefficient per
data channel, which greatly simplifies
the control logic and hence minimizes
the design resource utilization.
 However, with higher clock-rate ca-
pabilities (for example, more than 500
MHz on lowest-speed-grade UltraScale
devices), and for filters running at a rel-
atively low sampling rate, it is often the
case that the clock rate can be selected
as a multiple of the composite sampling
rate. It’s desirable to increase the clock
rate as much as possible to further re-
duce the design footprint, as well as the
power consumption. In such situations, a
semi-parallel architecture is built where
each DSP48 processes K coefficients per
channel, where K is the ratio between the
clock rate and the composite sampling
rate. The most efficient implementation
then consists of splitting the filter into its
K phases, each DSP48 processing a spe-
cific coefficient of these K phases.

At each clock cycle, the successive
phases of the filter output are comput-
ed and need to be accumulated together
to form an output sample (once every
K cycle). Consequently, an additional
accumulator is required at the filter out-
put compared with a parallel implemen-
tation. This full-precision accumulator
works on a large data width, equal to
b

S
+b

C
+b

F
, where b

S
 and b

C
 are respec-

tively the bit widths of the data samples
and coefficients, and b

F
=Log

2
N is the

The addition of a fourth input operand
to the ALU through the extra W-mux
multiplexer brings the most benefit

for radio applications.

X C E L L E N C E I N W I R E L E S S

 20 Xcell Journal Second Quarter 2014

filter bit growth, N being the total num-
ber of coefficients. Normal practice is
therefore to implement the accumulator
within a DSP48 slice to ensure support
for the highest clock rate while minimiz-
ing footprint and power.

It should be noted that semi-par-
allel architectures can be derived for
any type of filter: single-rate, integer
or fractional-rate interpolation and

decimation. Figure 3 shows a simpli-
fied block diagram for both 7 Series
and UltraScale implementations. It
clearly highlights the advantage of the
UltraScale solution, since the phase ac-
cumulator is absorbed by the last DSP48
slice thanks to the W-mux capability.

Let’s now consider the implemen-
tation of a fully parallel complex MAC
operator generating one output every

clock cycle. It is well known that you
can rewrite the equation of a complex
product, P

I
 + j.P

Q
 = (A

I
 + j.A

Q
).(B

I
 + j.B

Q
),

so as to use only three real multiplica-
tions, according to:

• P
I
 = P

1
 + A

I
.(B

I
 - B

Q
)

• P
Q
 = P

1
 + A

Q
.(B

I
 + B

Q
)

where P
1
 = B

Q
.(A

I
 - A

Q
).

A B D PCOUT PCIN

Data
MEM/SRL

Data
MEM/SRL

Data
MEM/SRL

Data
MEM/SRL

Data
MEM/SRL

Data
MEM/SRL

Din

h0
h1
h2

h0
h1
h2

h3
h4
h5

h6
h7
h8

DOUT

x

+

+

A B D PCOUT PCIN

x

+

+

x

+

+

+
DSP48E1 DSP48E1DSP48E1DSP48E1

Figure 3 – Implementation of a semi-parallel filter on 7 Series and UltraScale architectures

A B D PCOUT PCIN

Data
MEM/SRL

Data
MEM/SRL

Data
MEM/SRL

Data
MEM/SRL

Data
MEM/SRL

Data
MEM/SRL

Din

h0
h1
h2

h0
h1
h2

h3
h4
h5

h6
h7
h8

DOUT

x

+

+

A B D PCOUT PCIN

x

+

+

x

+

+

D
S

P
48

E
2

D
S

P
48

E
2

D
S

P
48

E
2

(b) UltraScale implementation

 (a) 7 Series implementation

X C E L L E N C E I N W I R E L E S S

 Second Quarter 2014 Xcell Journal 21

Consequently, by exploiting the built-
in pre-adder, you can implement a com-
plex multiplier with three DSP48s only—
one to compute P

1
 and the other two to

handle the P
I
 and P

Q
 outputs. Depending

on the latency requirements, which also
dictate the speed performance, some log-
ic needs to be added to balance the de-
lays between the different data paths. To
get maximal speed support, the DSP48
must be fully pipelined, which results in
an overall latency of six cycles for the
operator. A two-cycle delay line is conse-
quently added on each input to correctly
align the real and imaginary data paths.
Those are implemented with four SRL2
per input bit, which are in effect packed
into two LUTs by taking advantage of the
SRL compression capabilities.

The complex MAC is finally complet-
ed by adding an accumulator on each of
the P

I
 and P

Q
 outputs. Again this accu-

mulator works on large data widths and
is therefore better integrated within a
DSP48 slice. The corresponding imple-
mentations for 7 Series and UltraScale
devices are shown in Figure 4, which
once again demonstrates the benefit of
the W-mux integration. The P

I
 and P

Q

DSP48E2 slices absorb the accumula-
tors, with 40 percent resource savings.
It is worth mentioning that the latency
is also reduced, which may be benefi-
cial for some applications.

Using a similar construction, you can
build a complex filter (one with com-
plex data and coefficients) with three
real filters, as depicted in Figure 5. The
real and imaginary parts of the input
signal are fed into two real filters, with
coefficients derived respectively as the
difference and sum of the imaginary and
real parts of the filter coefficients. The
third filter processes the sum of the in-
put real and imaginary parts in parallel,
using the real part of the coefficients.

The outputs of these three filters are
finally combined to generate the real
and imaginary components of the out-
put, which can again benefit from the
W-mux, when parallel filters need to be
built, which is typically the case for the
equalizers used in DFE applications.

PREG

SRL-2

AREG-0

DREG

BREG-0 BREG-1

ADREG

MREG

DSP48E1

– +

x

+

PREG

AREG-0

DREG

BREG-0 BREG-1

ADREG

MREG

DSP48E1

PREG

AREG-0

DREG

BREG-0 BREG-1

ADREG

MREG

DSP48E1

+

+

CREG

CREG

+

+

x

x

P1 PI PQ PIACC P Q ACC

+
PREGCREG

+
PREGCREG

DSP48E1

DSP48E1

SRL-2

SRL-2

SRL-2

SRL-2

Figure 4 – Implementation of a complex MAC on 7 Series and UltraScale architectures

PREG

SRL-2

AREG-0

DREG

BREG-0 BREG-1

ADREG

MREG

DSP48E2

– +

x

+

PREG

AREG-0

DREG

BREG-0 BREG-1

ADREG

MREG

DSP48E2

PREG

AREG-0

DREG

BREG-0 BREG-1

ADREG

MREG

DSP48E2

+

+

CREG

CREG

+

+

x

x

P1 PI PQ PIACC P Q ACC

SRL-2

SRL-2

SRL-2

SRL-2

(b) UltraScale implementation

 (a) 7 Series implementation

BENEFITS OF THE ULTRASCALE
MEMORY ARCHITECTURE
The Block RAMs integrated in Ultra-
Scale devices are essentially the same as
in the 7 Series, but the new architecture
introduces a hardware data-cascading
scheme, together with a dynamic pow-
er-gating capability. Figure 6 illustrates
this cascade, showing the data multi-
plexers embedded between every low-
er and upper adjacent Block RAM in a
column. Larger memories can therefore
be built in a bottom-up fashion without
additional use of logic resources.
 The cascade covers each entire col-
umn across the device, but its usage is
better limited to a single clock region
(that is, 12 successive BRAMs) to avoid
clock skew and to maximize timing per-
formance. Full flexibility is also avail-
able to support different implementa-
tions of the cascade feature. In effect,
you can apply the multiplexer either to
the Block RAM data input or to the out-
put after or before the optional register.

The cascade opens up the possibili-
ty of building large memories requiring
more than one BRAM, while simulta-
neously supporting minimal footprint,
highest clock rate and minimal pow-
er, which is not feasible with 7 Series
devices. For example, a 16K memory
storing 16-bit data is better implement-
ed with eight BRAMs (36K) configured
as 16Kx2-bit on a 7 Series device to
avoid external data multiplexing, which
would add logic resources and latency,
and could impact timing and routing
congestion. This is unfortunately the
less-efficient approach from a dynam-
ic-power perspective, since the eight
Block RAMs are enabled during any
read or write operation. The optimal
solution consists of using a 2Kx16-bit
configuration, since only a single BRAM
is then enabled, which divides the dy-
namic power by a factor 8. This is pre-
cisely what the cascade feature enables
on the UltraScale devices, together with
the dynamic power-gating capability.

Another direct application of the
Block RAM cascade is related to the
implementation of I/Q data-switching

Figure 5 – Implementation architecture of a complex filter

+

+

+

X C E L L E N C E I N W I R E L E S S

 22 Xcell Journal Second Quarter 2014

Figure 6 – BRAM cascade on UltraScale devices

H
ar

d
en

ed
 C

as
ca

d
e

BRAM

Addr

BRAM

BRAM

BRAM

BRAM

functionality, commonly integrated with
the baseband CPRI interfacing of DFE
systems. Figure 7 shows the high-level
switching architecture, which essential-
ly consists of an NxM memory array.
The successive data on the N ingress
streams are written into the appropriate
Block RAM in a line according to their
output destination, and the M egress
streams are read out from the appro-
priate Block RAM in a column. Conse-
quently, each column can effectively be
implemented with the BRAM cascade.

For more information on the 20-nm
UltraScale family, visit http://www.xil-
inx.com/products/silicon-devices/fpga/
index.htm.

References

1. Xilinx backgrounder, “Introducing
UltraScale Architecture: Industry’s First
ASIC-Class All Programmable Architec-
ture,” July 2013

2. Xilinx white paper WP435, “Xilinx Ul-
traScale: The Next Generation Architec-
ture for Your Next Generation Architec-
ture,” July 8, 2013

3. Xilinx datasheet DS890, “UltraScale
Architecture and Product Overview,”
Feb. 6, 2014

4. Xilinx backgrounder, “9 Reasons why
the Vivado Design Suite Accelerates
Design Productivity,” July 2013

5. Xilinx user guide UG949, “Design
Methodology Guide for the Vivado
Design Suite,” July 5, 2013

6. Xilinx white paper WP445, “Enabling
High-Speed Radio Designs with Xilinx
All Programmable FPGAs and SoCs,”
Jan. 20, 2014

7. Xilinx user guide UG579, “UltraScale
Architecture—DSP Slice, Advance Spec-
ification User Guide,” Dec. 10, 2013

8. IEEE Computer Society, “IEEE Standard
for Floating Point Arithmetic, IEEE Std
754-2008,” Aug. 29, 2008

X C E L L E N C E I N W I R E L E S S

 Second Quarter 2014 Xcell Journal 23

CTRL Bus

CTRL
BRAM

CTRL Bus

CTRL
BRAM

Ingress 1

1R1W
BRAM

1R1W
BRAM

1R1W
BRAM

1R1W
BRAM

MUX

MUXMUX

A
D

D
R

A
D

D
R

A
D

D
R

A
D

D
R

D
AT

A

D
AT

A

D
AT

A

D
AT

A

D
AT

A

D
AT

A

D
AT

A

D
AT

A

D
AT

A

Ingress 1

Ingress 2

Egress 1 Egress 2

MUX

Figure 7 – Data-switching high-level architecture
www.trenz-electronic.de

difference by design

Platform Features
• 4×5 cm compatible footprint
• up to 8 Gbit DDR3 SDRAM
• 256 Mbit SPI Flash
• Gigabit Ethernet
• USB option

All Programmable
FPGA and SoC modules

4
form x factor

5

Available SoMs:

Design Services
• Module customization
• Carrier board customization
• Custom project development

rugged for harsh environments
extended device life cycle

http://www.trenz-electronic.de
http://www.xilinx.com/products/silicon-devices/fpga/index.htm

X C E L L E N C E I N I N D U S T R I A L

 24 Xcell Journal Second Quarter 2014

Angle Measurement
Made Easy with
Xilinx FPGAs and a
Resolver-to-Digital
Converter
When properly paired with an FPGA,
angle transducers can help engineers

create ever-more-remarkable machinery.

X C E L L E N C E I N I N D U S T R I A L

 Second Quarter 2014 Xcell Journal 25

E
ver since humans invented the wheel, we have
wanted to know, with varying degrees of accu-
racy, how to make wheels turn more efficient-
ly. Over the course of the last few centuries,
scientists and engineers have studied and de-

vised numerous ways to accomplish this goal, as the basic
principles of the wheel-and-axle system have been applied
to virtually every mechanical system, from cars to stereo
knobs to cogs in all forms of machinery, to the humble
wheelbarrow [1].
 Over these many eras, it turns out the most essential el-
ement in making a wheel turn efficiently is not the wheel
itself (why reinvent it?) but the shaft angle of the wheel.
And the most effective way to measure and optimize a shaft
angle today is through the use of angle transducers. There
are many types of angle transducers that help optimize
wheel efficiency through axle monitoring and refinements,
but by applying FPGAs to the task you can achieve remark-
able results and improve axle/wheel efficiencies in a broad
number of applications.
 Before we get into the details of how engineers are doing
this optimally with Xilinx® FPGAs, let’s briefly review some
basic principles of angle transducers. Today there are two
widely used varieties: encoders and resolvers.

TYPES OF ENCODERS AND RESOLVERS
Encoders fall into two basic categories: incremental and
absolute. Incremental encoders monitor two positions
on an axle and create an A or B pulse each time the axle
passes those positions. A separate external electric count-
er then interprets those pulses for speed and rotational
direction. Incremental counters are useful in a number of
applications, but they do have some disadvantages. For
example, when the axle is powered off, an incremental
encoder must first calibrate itself by returning to a desig-

RESOLVER WINDINGS

R2

ROTOR

R4

S4

S3

S2

S1

STATOR

STATOR

θ

Figure 1 – Excitation to the rotor of a resolver

by N. N. Murty
Scientist “F”

S. B. Gayen
Scientist “F”

Manish Nalamwar
Scientist “D”
nalamwar.manishkumar@rcilab.in

K. Jhansi Lakshmi,
Technical Officer “C”
Radar Seeker Laboratory
Research Centre IMARAT
Defense Research Development Organization
Hyderabad, India

mailto:nalamwar.manishkumar@rcilab.in

X C E L L E N C E I N I N D U S T R I A L

 26 Xcell Journal Second Quarter 2014

nated calibration point before beginning operation. Incre-
mental counters are also susceptible to electrical interfer-
ence, which can result in inaccuracies in pulses they send
to the system and thus in rotation counts. Moreover, many
incremental encoders are photoelectric devices, which
precludes their use in radiation-hazardous areas, if that is
a concern for your targeted application.
 Absolute encoders are sensor systems that monitor
the rotation count and direction of an axle. In an abso-
lute-encoder-based system, users typically attach a wheel
to an axle that has an electrical contact or photoelectric
reference. When the axle is in operation, the absolute-en-
coder-based system records the rotation and direction of
the operation and generates a parallel digital output that is
easily translated into code, most commonly binary or Gray
code. Absolute encoders are useful in that they need to be
calibrated only once—typically in the factory—and not be-
fore every use. Moreover, they are typically more reliable
than other encoders. That said, absolute encoders are typ-
ically expensive, and they are not great with parallel data
transmission, especially if the encoder is located far away
from the electronic system measuring its readings.

A resolver, for its part, is a rotary transformer—an ana-

log device whose output voltage is uniquely related to the input
shaft angle it is monitoring. It is an absolute-position transduc-
er with 0o to 360o of rotation that connects directly to the axle
and reports speed and positioning. Resolvers have a number
of advantages over encoders. They are robust devices that can
withstand harsh environments marked by dust, oil, temperature
extremes, shock and radiation. Being a transformer, a resolver
provides signal isolation and a natural common-mode rejection
of electrical interference. In addition to these features, resolvers
require only four wires for the angular data transmission, which
suits them for everything from heavy manufacturing to minia-
ture systems to those used in the aerospace industry.

A further refinement is the brushless resolver, which
does not require slip-ring connections to the rotor. This
type of resolver is therefore even more reliable and has a
longer life cycle.

Resolvers use two methods to obtain output voltages
related to the shaft angle. In the first method, the rotor
winding, as shown in Figure 1, is excited by an alternating
signal and the output is taken from the two stator wind-
ings. As the stator windings are mechanically positioned at
right angles, the output signal amplitude is related by the
trigonometric sine and cosine of the shaft angle. Both the

ROTOR REFERENCEV sin ωt

V sin ωt sin θ

V sin ωt cos θ V sin ωt cos θ sin ψ

V sin ωt sin θ cos ψ

K sin (θ – ψ)

V sin ωt [sin (θ – ψ)]
COSINE

MULTIPLIER

ψ = θ ± 1 LSB

ψ = DIGITAL ANGLE

ψ

ψ

ERROR

VELOCITY

WHEN ERROR = 0,

STATOR
INPUTS

–

+
SINE

MULTIPLIER

UP /DOWN
COUNTER

LATCHES

DETECTOR

INTEGRATOR

VCO

ψ

Figure 2 – Resolver-to-digital converter (RDC) block diagram

X C E L L E N C E I N I N D U S T R I A L

 Second Quarter 2014 Xcell Journal 27

sine and cosine signals have the same phase as the original
excitation signal; only their amplitudes are modulated by
sine and cosine as the shaft rotates.

In the second method, a stator winding is excited with
the alternating signals, which are in phase quadrature to
each other. Then a voltage induces in the rotor winding.
The winding’s amplitude and frequency are fixed, but its
phase shift varies with the shaft angle.

The resolver can be positioned where the angle needs
to be measured [2]. The electronics, generally a resolv-
er-to-digital converter (RDC), can be positioned where the
digital output needs to be measured. Analog output from
the resolver, which contains the angular position informa-
tion of the shaft, is then transformed in digital form using
the RDC.

FUNCTIONALITY OF THE TYPICAL RDC
In general, the two outputs of a resolver are applied to the
sine and cosine multiplier of the RDC [3]. These multipli-
ers incorporate sine and cosine lookup tables and func-
tion as multiplying digital-to-analog converters. Figure 2
shows their functionality.
 Let us assume, in the beginning, that the current state of
the up/down counter is a digital number representing a trial

angle, ψ. The converter seeks to adjust the digital angle, ψ,
continuously to become equal to and track θ, the analog an-
gle being measured.
 The stator output voltage of the resolver is:

V1= V sinωt sinθ Eq. 1
V2= V sinωt cosθ Eq. 2

where θ is the angle of the resolver’s rotor. The digital angle ψ
is applied to the cosine multiplier and its cosine is multiplied
by V1 to produce the term:

V sinωt sinθ cosψ. Eq. 3

 The digital angle ψ is also applied to the sine multiplier
and multiplied by V2 to produce the term:

V sinωt cosθ sinψ. Eq. 4

 These two signals are subtracted from each other by the
error amplifier to yield an ac error signal of the form:

(V sinωt sinθcosψ – V sinωt cosθ sinψ) Eq. 5

V sinωt (sinθ cosψ- cosθ sinψ) Eq. 6

 From trigonometric identity, this reduces to:

V sinωt [sin (θ -ψ)] Eq. 7

REFERENCE CONDITIONER

FILTER
47 µf
external
capacitor

RH RL

R

LOS “S” OPTION
SYNTHESIZED REFERENCE

BIT

C1

R1

VEL

E

REFERENCE CONDITIONER

DC/DC
CONVERTER

BIT
DETECTOR

ERROR

INTEGRATOR

DEMODULATOR

HYSTERESIS

VCO & TIMING

GAIN

A
B

A B

14/16 BIT
UP/DOWN
COUNTER

INHELEM DATA

8 8

CONTROL
TRANSFORMER

DATA LATCHES

INPUT OPTION

S1
S2
S3
S4

+5 V +5 V

-5 V
(-4.2 V typical)

Figure 3 – SD-14620 block diagram (one channel)

X C E L L E N C E I N I N D U S T R I A L

 28 Xcell Journal Second Quarter 2014

 The detector synchronously demodulates this ac error
signal, using the resolver’s rotor voltage as a reference.
This results in a dc error signal proportional to sin (θ -ψ).

The dc error signal feeds an integrator, the output of which
drives a voltage-controlled oscillator. The VCO, in turn, causes
the up/down counter to count in the proper direction to cause:

 sin (θ -ψ)→0. Eq. 8

When this result is achieved,

 θ -ψ→0, Eq. 9

and therefore

 θ = ψ Eq. 10

in one count. Hence, the counter’s digital output, ψ, represents
the angle θ. The latches make it possible to transfer this data
externally without interrupting the loop’s tracking.
 This circuit is equivalent to a Type 2 servo loop, as it has
in effect two integrators. One is the counter, which accu-
mulates pulses; the other is the integrator at the output of
the detector. In a Type 2 servo loop with a constant-rota-
tional-velocity input, the output digital word continuously
follows, or tracks, the input, without needing externally de-
rived conversion.

TYPICAL EXAMPLE OF AN RDC: THE SD-14621
The SD-14621 is a small, low-cost, RDC from Data Device
Corp. (DDC). It has two channels with programmable res-
olution control. Resolution programming allows selection
of 10-, 12-, 14- or 16-bit modes [4]. This feature allows low
resolution for fast tracking or higher resolution for higher
accuracy. Thanks to its size, cost, accuracy and versatili-
ty, this converter is suitable for high-performance military,
commercial and position-control systems.

 A single +5 V is required for device operation. The con-
verter has velocity outputs (VEL A, VEL B) of a voltage
range of ±4 V with respect to analog ground, which can be
used to replace a tachometer. Two built-in test outputs are
provided for two channels (/BIT A and /BIT B) to indicate
loss of signal (LOS).
 This converter has three main sections: an input front
end, an error processor and a digital interface. The front end
differs for synchro, resolver and direct inputs. An electron-
ic Scott-T is used for synchro inputs, a resolver conditioner
for resolver inputs and a sine-and-cosine voltage follower
for direct inputs. These amplifiers feed the high-accuracy
control transformer (CT). The other input of the CT is a 16-
bit digital angle ψ and the output is an analog error angle,
or a difference angle, between the two inputs. The CT per-
forms the ratiometric trigonometric computation of SINθ
COSψ - COSθ SINψ = Sin(θ-ψ) using amplifiers, switches,
logic and capacitors in precision ratios.

Compared with a conventional precision resistor, these
capacitors are used in precision ratios to get enhanced ac-
curacy. Further, these capacitors (which are used with an
op amp as a computing element) sample at high rates to
eliminate drift and op-amp offsets.

The DC error processing is integrated, yielding a velocity
voltage that drives a voltage-controlled oscillator. This VCO
is an incremental integrator when it is combined with the
velocity integrator: a Type 2 servo feedback loop.

REFERENCE OSCILLATOR
The power oscillator in our design, also from DDC, is the
OSC-15802. This device is suitable for RDC, synchro, LVDT,
RVDT and inductosyn applications [5]. The frequency and
amplitude outputs are programmable with capacitors and re-
sistors, respectively. The output frequency range is 400 Hz to

Cext

QUAD OSCILLATOR

+15 VDC

GND

-15 VDC

REF OUT +90°

C1

C2 Cext

PA OUT

REF
OUT

Rext PA IN

5350 Ω

G = +2.8

-

+

Figure 4 – Block diagram of the OSC-15802 reference oscillator

 Second Quarter 2014 Xcell Journal 29

X C E L L E N C E I N I N D U S T R I A L

DETAILS OF THE DEVICE DRIVER
In this case, we used an external input clock of 20 MHz for
the FPGA. This FPGA has a hard PowerPC® 440 core that is
running at a 200-MHz frequency. The timing diagram of the
RDC is shown in Figure 6 and Figure 7.
 In accordance with the timing diagram of the RDC, we
developed, tested and confirmed correct functionality
with the actual hardware [4]. The actual code of the de-
vice driver is included in the separate XBD file. As per the
timing diagram, we generated required delays using for
loops. When processing is running at 200 MHz, each count
corresponds to a delay of 5 nanoseconds.

The device driver has three sections of code: RDC ini-
tialization; generation of a control signal and reading from
channel A of the RDC; and generation of a control signal
and reading from channel B. RDC initialization is the point
at which the direction of the signal and default values are

10 kHz, with an output voltage of 7 Vrms. Figure 4 shows a
block diagram of the device.
 The oscillator output, which is given to the resolver and
the RDC, works as a reference signal.

VIRTEX-5 FX30T FPGA AND RDC INTERFACE
For our design, we used a Xilinx Virtex®-5 FX30T FPGA [6].
The I/O voltage of the FPGA is 3.3 V, while the RDC’s volt-
age is 5 V. We used voltage transceivers to achieve voltage
compatibility between the two devices. Internal connec-
tions with the FPGA are established through the GPIO IP
core provided by Xilinx, as seen in Figure 5.
 For simplicity’s sake, Figure 5 shows just one channel with
the single resolver interface. You will find the pin details of the
RDC and corresponding pin locking with the FPGA in the Xil-
inx Board Description (XBD) file that accompanies this article.
The details are listed in Section 1 of that document.

SCALED VEL CH A

TRANSCEIVER

TRANSCEIVER

D0-15 D0-15

/BIT A

FD16-31

FPGA
(VIRTEX-5

FX30T)
RDC

(SD-14621-DS)

INH A
RES CON A
/ENABLE A

BIT1-16 S1 A
S3 A
 S2 A
S3 A

S1
S3
 S2
S4

RESOLVER

POWER

OSCILLATOR

(OSC-15802)

REF SIGNAL

VEL CH A

REF
SIGNAL

SIGNAL
CHAIN

Figure 5 – RDC interface with the Virtex-5 FPGA (single channel)

 The I/O voltage of the FPGA is 3.3 V, while the
RDC’s voltage is 5 V. We used voltage

transceivers to achieve voltage compatibility
between the two devices.

http://issuu.com/xcelljournal/docs/xcell80/44?e=2232228/2002872
http://issuu.com/xcelljournal/docs/xcell80/44?e=2232228/2002872
http://issuu.com/xcelljournal/docs/xcell80/44?e=2232228/2002872
http://www.xilinx.com/publications/fpga101.pdf

X C E L L E N C E I N I N D U S T R I A L

 30 Xcell Journal Second Quarter 2014

set. For example, with the following statement, the direc-
tion is set as “out” from the FPGA to the RDC.

XGpio_WriteReg(XPAR_RESOLUTION_CNTRL_CH_A_
 BASEADDR,XGPIO_TRI_OFFSET,0x000);

With the next statement, the 16-bit resolution is set by
writing “0x3” (that is, pulling high):

XGpio_WriteReg(XPAR_RESOLUTION_CNTRL_CH_A_
 BASEADDR,XGPIO_DATA_OFFSET,0x03);

Figure 8 shows a snapshot of the coding. Note: for sim-
plification, we have included code for only one channel.

 As we have seen, angle transducers help engineers cre-
ate a better wheel and thus a plethora of more efficient
machinery. Resolvers are an especially useful type of an-
gle transducer, and when properly paired and controlled
with an FPGA, can help engineers create even more remark-
able machinery.

References

1. “Synchro/Resolver Conversion Handbook,” Data Device Corp.

2. John Gasking, “Resolver-to-Digital Conversion: A Simple and
Cost-Effective Alternative to Optical Shaft Encoders,” AN-263,
Analog Devices

3. Walt Kester, “Resolver to Digital Converter,” MT-030, Analog
Devices

4. SD-14620 Series Data Sheet, Data Device Corp.

5. OSC-15802 Data Sheet, Data Device Corp.

6. “Virtex-5 Family Overview,” Xilinx

DATA
VALID

INHIBIT

DATA

500 ns max

DATA
VALID

Figure 7 – ENABLE timing

Figure 6 – INHIBIT timing

DATA

100 ns MAX

EM OR EL

DATA
VALIDHIGH Z HIGH Z

150 ns MAX

Figure 8 – A snapshot of RDC device driver code

seXGpio_WriteReg(XPAR_INHIBIT_CH_A_
BASEADDR,XGPIO_DATA_OFFSET,0x01);
for(i=0;i<=5;i++); //gives delay of 25 ns
 XGpio_WriteReg(XPAR_ENABLE_LSB_
CH_A_BIT_BASEADDR,XGPIO_DATA_OFFSET,0x01);

for(i=0;i<=5;i++);
XGpio_WriteReg(XPAR_INHIBIT_CH_A_BASEAD-
DR,XGPIO_DATA_OFFSET,0x00);
for(i=0;i<=2;i++);
XGpio_WriteReg(XPAR_ENABLE_LSB_CH_A_BIT_
BASEADDR,XGPIO_DATA_OFFSET,0x00);

for(i=0;i<=2;i++);
lsb_val=XGpio_ReadReg(XPAR_RDC_DATA_15_
TO_0_PINS_BASEADDR,XGPIO_DATA_OFFSET);

XGpio_WriteReg(XPAR_INHIBIT_CH_A_BASEAD-
DR,XGPIO_DATA_OFFSET,0x01);
 for(i=0;i<=5;i++);
XGpio_WriteReg(XPAR_ENABLE_LSB_CH_A_BIT_
BASEADDR,XGPIO_DATA_OFFSET,0x01);
for(i=0;i<=25;i++);

XGpio_WriteReg(XPAR_INHIBIT_CH_A_BASEAD-
DR,XGPIO_DATA_OFFSET,0x01);
for(i=0;i<=5;i++);
XGpio_WriteReg(XPAR_ENABLE_MSB_CH_A_BIT_
BASEADDR,XGPIO_DATA_OFFSET,0x01);
for(i=0;i<=5;i++);

XGpio_WriteReg(XPAR_INHIBIT_CH_A_BASEAD-
DR,XGPIO_DATA_OFFSET,0x00);
 for(i=0;i<=2;i++);
XGpio_WriteReg(XPAR_ENABLE_MSB_CH_A_BIT_
BASEADDR,XGPIO_DATA_OFFSET,0x00);
for(i=0;i<=2;i++);
msb_val=XGpio_ReadReg(XPAR_RDC_DATA_15_
TO_0_PINS_BASEADDR,XGPIO_DATA_OFFSET);

 lsb_val=lsb_val & 0x00ff;

 msb_val=msb_val & 0xff00;

 rdccount_cha = msb_val | lsb_val;

XGpio_WriteReg(XPAR_INHIBIT_CH_A_BA-
SEADDR,XGPIO_DATA_OFFSET,0X01);
for(i=0;i<=5;i++);

XGpio_WriteReg(XPAR_ENABLE_MSB_CH_A_
BIT_BASEADDR,XGPIO_DATA_OFFSET,0x01);
for(i=0;i<=20;i++);

 Debugging Xilinx's
 ZynqTM -7000 family
 with ARM CoreSight

► RTOS support, including Linux

 kernel and process debugging

► SMP/AMP multicore CortexTM-

 A9 MPCoreTMs debugging

► Up to 4 GByte realtime trace

 including PTM/ITM

► Profiling, performance and

 statistical analysis of Zynq's

 multicore CortexTM -A9 MPCoreTM

Is your marketing message reaching the right people?

www.xilinx.com/xcell

Hit your target by advertising your product or service in the Xilinx Xcell Journal,
you’ll reach thousands of qualified engineers, designers, and engineering managers worldwide.

Call today: (800) 493-5551 or e-mail us at xcelladsales@aol.com

http://www.lauterbach.com
http://www.xilinx.com/xcell

X C E L L E N C E I N I N D U S T R I A L

 32 Xcell Journal Second Quarter 2014

Motor Drives
Migrate to Zynq
SoC with Help
from MATLAB
by Tom Hill
Senior Manager, DSP Solutions
Xilinx, Inc.
tom.hill@xilinx.com

Industrial designers can
use rapid prototyping and
model-based design to
move their motor control
algorithms to the Zynq

SoC environment.

X C E L L E N C E I N I N D U S T R I A L

 Second Quarter 2014 Xcell Journal 33

S
ince the 1990s, developers of motor
drives have been using a multichip ar-
chitecture to implement their motor
control and processing requirements.

In this architecture, a discrete digital signal-pro-
cessing (DSP) chip executes motor control algo-
rithms, an FPGA implements high-speed I/O and
networking protocols, and a discrete processor
handles executive control. With the advent of
the Xilinx® Zynq®-7000 All Programmable SoC,
however, designers have the means to consoli-
date these functions into a single device while
integrating additional processing tasks. The re-
duction in parts count and complexity makes it
possible to lower system cost while improving
performance and reliability.

But how can drive developers evolve their
established design practices to leverage the
Zynq SoC?
 Industrial designers have long embraced
model-based design for the development of
custom motor algorithms on DSP chips through
the use of simulation and C-code generation.
Now, a new workflow from MathWorks—de-
veloped in conjunction with Xilinx—extends
model-based design to the processing system
and programmable logic available with the
Zynq-7000 All Programmable SoC.

ZYNQ SOCS FOR MOTOR CONTROL
Today’s advanced motor control systems are a
combination of control algorithms and industri-
al networks, including EtherCAT, Profinet, Pow-
erlink and Sercos III, that draw processing band-
width from the computing resources. Moreover,
other requirements are converging into the con-
trol system including motion-control layers, PLC
layers, diagnostic layers and user interfaces for
commission and maintenance or remote moni-
toring. These requirements translate into logical
and physical partitions with elements that fit
naturally into the processing systems while oth-
er elements best fit into the hardware-assisted
offloading and acceleration.

The hardware platform you select should
provide a robust and scalable system. Xilinx’s
Zynq SoCs fulfill these requirements by sup-
plying a high-performance processing system
to address the networking, motion, soft-PLC,
diagnostic and remote-maintenance functions
combined with programmable logic to accel-
erate performance-critical functions in hard-
ware. On the processing side, the Zynq SoC

X C E L L E N C E I N I N D U S T R I A L

 34 Xcell Journal Second Quarter 2014

combines a dual-core ARM® Cortex™-A9
processing system with a NEON copro-
cessor and floating-point extensions to
accelerate software execution. On the
programmable logic side, the device has
up to 444,000 logic cells and 2,200 DSP48
slices that supply massive processing
bandwidth. Five high-throughput AMBA®-
4 AXI high-speed interconnects tightly
couple the programmable logic to the pro-
cessing system with the equivalent of more
than 3,000 pins of effective bandwidth.

Table 1 lists the processing perfor-
mance that Zynq SoC devices can achieve.

PLANT AND MOTOR MODELING
USING SIMULINK AND THE
CONTROL SYSTEMS TOOLBOX
Modern control algorithms have sys-
tem times and system variables that
span several orders of magnitude, mak-

ing hardware/software partitioning a
daunting, time-consuming and iterative
task. Figure 2 depicts a typical electri-
cal drive. The power source is normally
50 to 60 Hz and is rectified to achieve a

Figure 1 – MathWorks’ workflow targeting
the Zynq SoC, using C and HDL code generation

Table 1 – Processing performance of the Zynq SoC

Elements Performance (up to)
Processors (each) 1 GHz
Processors (aggregate) 5,000 DMIPs
DSP (each) 741 MHz
DSP (aggregate) 2,662 GMACs
Transceivers (each) 12.5 Gbps
Transceivers (aggregate) 200 Gbps
Software acceleration 10x

continuous voltage (DC). This DC volt-
age is then converted into a variable
frequency that controls the power stage
that feeds the motor terminals. The con-
troller also must read the motor’s basic
variables including current and voltag-
es. It likewise must read or establish the
shaft position including its speed and
handling commands originating from
the communication network or super-
vising controller.

Simulink® provides a block-diagram
environment for multidomain system
simulation and model-based design
that is well suited to simulating sys-
tems that include control algorithms
and plant models. MathWorks prod-
ucts such as the Control Systems Tool-
box provide a variety of “apps” based
on widely used methods of systemat-
ically analyzing, designing and tuning
control systems modeled in Simulink.
Performing system modeling in Sim-
ulink can accelerate development of
motor control systems while reducing
risk in the following ways:

• Reduces risk of damage – Simula-
tion allows thorough examination of
new control system algorithms be-
fore they are tested on production
hardware, where there are risks of
damaging drive electronics, motors
and other system components.

• Accelerates system integration
– Support staff must integrate new
control system algorithms into the

X C E L L E N C E I N I N D U S T R I A L

 Second Quarter 2014 Xcell Journal 35

production system, meaning that de-
ploying new controllers can consume
their limited time and can make the
deployment a protracted process.

• Reduces dependency on equip-
ment availability – The production
environment itself may not be avail-
able, such as in cases where custom
drive electronics or electric motors
are under development or are not lo-
cated where control system designers
can access them.

Given these factors, simulation pro-
vides an excellent alternative to testing
on production hardware. Simulation
environments such as Simulink provide
a framework for creating plant models
from preexisting libraries of building
blocks of electromechanical components
for the evaluation of new control system
architectures against plant models.

Risk to the schedule is further reduced
by linking the system model to a rap-
id-prototyping environment as well as the
final production system. The rapid-proto-
typing flow enables algorithm developers
to prototype without having to depend
on hardware designers. Instead they use
a platform-specific support package in a
highly automated process that deploys
the hardware and software components
of the system to a design template that
can be compiled to a specific hardware
development platform. The hardware
and software design teams can reuse
these same hardware and software com-
ponents in the final production systems
without modification to accelerate devel-
opment and reduce errors.

RAPID PROTOTYPING USING THE
AVNET INTELLIGENT DRIVES KIT
Designers can pair the Avnet Zynq-7000
AP SoC / Analog Devices Intelligent
Drives Kit with Simulink and the Zynq
SoC workflow for a complete rapid-pro-
totyping system for motor control appli-
cations. This kit combines the Zynq SoC
with the latest generation of Analog De-
vices’ high-precision data converters and
digital isolation. The kit enables high-per-
formance motor control and dual Gigabit

Ethernet industrial networking connec-
tivity (http://www.xilinx.com/products/
boards-and-kits/1-490M1P.htm).

It comes with an Avnet ZedBoard
7020 baseboard; Analog Devices’
AD-FMCMOTCON1-EBZ module, which
is capable of driving brushless DC and
stepper motors with a 24-volt external
power supply (included with the kit);
and a 24-V BLDC motor rated for 4,000
RPM and equipped with Hall-effect sen-
sors and a 1,250-CPR indexed encoder.
Also included are a Zynq SoC reference
design of field-oriented control and An-
alog Devices’ Ubuntu Linux framework
including drivers, application software
and source code.

EXAMPLE: TRAPEZOIDAL
MOTOR CONTROL
Let’s apply this workflow to the trape-
zoidal motor control system in Figure
1 using simulation in Simulink to evalu-
ate a controller with a simulated plant,
then prototype the controller using the
Intelligent Drives Kit. As a final step, we
will validate the Simulink model using
results from hardware testing.

In this example, we will use the kit
to drive an inertial load in the form of
an aluminum disc, with a basic trape-

Figure 2 – Major time constraints of electrical drive controllers

zoidal controller. The controller’s main
components are as follows:

• Hall-effect sensor – detects the
motor position

• Velocity estimator – computes rotor
velocity based on the sensor signal

• Six-step commutator – computes
the phase voltages and inverter en-
able signals based on rotor position
and velocity

• Pulse-width modulation (PWM) –
drives the controller outputs out
through the drive circuitry

We start by using a behavioral, con-
trol-loop model of the system suited
to control-loop analysis. First we will
evaluate the model in simulation by
subjecting it to a pulse test, command-
ing a rotational rate of 150 radians per
second for 2 seconds and then returning
to a stop. Through tuning of the control
loop’s proportional-integral (PI) control-
ler gains, we can achieve a settling time
of 1.2 seconds with negligible overshoot
(control-loop simulation results appear
as the purple-shaded signal in Figure 3;
details on this example are available at
mathworks.com/zidk).

http://www.mathworks.com/zidk

X C E L L E N C E I N I N D U S T R I A L

 36 Xcell Journal Second Quarter 2014

Figure 3 – Hardware and software simulation models used to validate against hardware results

Figure 4 – C and HDL code generated from partitioned Simulink model

www.cesys.com

▶ Xilinx™ Spartan-6 FPGA
 XC6SLX45(150)-3FGG484I
▶ USB 3.0 Superspeed interface
 Cypress™ FX-3 controller
▶ On-board memory
 2 Gb DDR2 SDRAM

▶ Samtec™ Q-strip connectors
 191 (95 differential) user IO

EFM-01

EFM-02

▶ Xilinx™ Spartan-3E FPGA
 XC3S500E-4CPG132C
▶ USB 2.0 Highspeed interface
 Cypress™ FX-2 controller
▶ On-board memory

▶ Standard 0.1“ pin header
 50 user IO

Hardware • Software • HDL-Design

FPGA module with USB 3.0
interface. Ideal for Custom
Cameras & ImageProcessing.

Low-cost FPGA module for
general applications.

Boards & Modules

FPGA

 Second Quarter 2014 Xcell Journal 37

X C E L L E N C E I N I N D U S T R I A L

With the bitstream loaded into the
programmable logic and the executable
running on an ARM core, we can run a
hardware-in-the-loop test. For this test,
we use a modified Simulink testbench
model from which we have removed the
models for the drive electronics, motor
and sensors, since we are using hard-
ware-in-the-loop in place of simulated
plant models. To help us check the out-
come of the test—and compare it with
our simulation results—we can set up
the Zynq SoC to store motor shaft veloc-
ity measurements and other data in the
memory of an ARM core (the black-shad-
ed signal in Figure 3 shows results from
hardware testing). Doing so enables us
to upload the results to a MATLAB ses-
sion for processing and visualization at
the conclusion of the test by applying a
pulse input in the testbench. In this way,
we can exactly repeat in hardware the
test we’ve done in simulation. The re-
sults from prototyping align very closely
with our simulation results, including
the discontinuity in the measured motor
velocity due to the Hall sensor.

This brief overview illustrates how
the MathWorks workflow for the Zynq
SoC enables model-based design for use
in simulation and prototyping. To con-
tinue on into production, you can im-
port the generated C and HDL code into
the Vivado® Design Suite, where you
can integrate them with executive rou-
tines, networking IP and other design
components required for the complete
system implementation.

To download the models shown in
this article and learn more about how
to use model-based design with the
Zynq-7000 All Programmable SoC / An-
alog Devices Intelligent Drives Kit from
Avnet, visit mathworks.com/zidk. From
this page, you can also browse a Sim-
ulink model that implements a com-
plete field-oriented control model on a
Zynq SoC device and view videos show-
ing this example in greater detail.

For information on how MathWorks
products support the Xilinx Zynq-7000
All Programmable SoC family, visit
mathworks.com/zynq.

With the control-loop gains set, we
now can test on a more accurate system
model for the controller. In contrast to
the control-loop model, the system mod-
el incorporates more detailed models
of the drive electronics and, more sig-
nificantly, it includes detailed models
that specify the implementation of the
controller and peripherals, including
timing-accurate models for PWM and
Hall-effect sensor processing.

We have partitioned the controller for
the Zynq SoC, with the velocity control-
ler and velocity estimator running on an
ARM core at 1 kHz and the commutator,
Hall sensor and PWM running on the
Zynq SoC’s programmable logic.

We can compare simulation results
for the control-loop and system models
(system model results appear as the red
signal in Figure 3). In general we get very
good agreement between the waveforms,
except as the motor’s rate approaches
zero. At such points the coarseness of
the Hall sensor, with only six index puls-
es per revolution of the motor’s shaft,
becomes evident. This high-fidelity sys-
tem model runs the 4-second simulation
in 7 minutes, compared with a run-time
of only 7 seconds for the lower-fidelity
control-loop model. For control system
designers, the takeaway here is that
these simulation results give us more
confidence that the control-loop model
is sufficiently accurate for further eval-
uation of controller alternatives, which
can be validated before hardware testing
using the system model.

Armed with these findings, we are
prepared to prototype the controller
on the Intelligent Drives Kit. Through
the Zynq SoC guided workflow, we can
generate C and HDL code from Simulink
models that have been partitioned into
subsystems targeting an ARM core and
programmable logic (Figure 4).

With this workflow, we use the HDL
Coder from MathWorks to generate an
IP core that will run in the Zynq SoC
device’s programmable logic to build an
executable running on an ARM core and
to establish the interfaces between core
and executable over the AXI bus.

http://www.mathworks.com/zynq
http://www.cesys.com
http://www.mathworks.com/zidk

X P L A N AT I O N : F P G A 1 0 1

 38 Xcell Journal Second Quarter 2014

How to Use
Interrupts on
the Zynq SoC
by Adam P. Taylor
Head of Engineering – Systems
e2v Technologies
aptaylor@theiet.org

X P L A N A N T I O N : F P G A 1 0 1

 Second Quarter 2014 Xcell Journal 39

I
n embedded processing, an interrupt is
a signal that temporarily halts the pro-
cessor’s current activities. The proces-
sor saves its current state and executes
an interrupt service routine to address

the reason for the interrupt. An interrupt can
come from one of the three following places:

• Hardware – An electronic signal connected
directly to the processor

• Software – A software instruction loaded by
the processor

• Exception – An exception generated by the
processor when an error or exceptional
event occurs

 Regardless of the source, interrupts can also
be classified as either maskable or non-mas-
kable. You can safely ignore a maskable inter-
rupt by setting the appropriate bit in an inter-
rupt mask register. But you cannot ignore a
non-maskable interrupt, because these are the
types typically used for timers and watchdogs.
 Interrupts can be either edge triggered or
level triggered. The Xilinx® Zynq®-7000 All Pro-
grammable SoC supports configuration of the
interrupt either way, as we will see later.

WHY USE AN INTERRUPT-
DRIVEN APPROACH?
Real-time designs often require an inter-
rupt-driven approach simply because many
systems will have a number of inputs (for ex-
ample keyboards, mice, pushbuttons, sensors
and the like) that will at times require process-
ing. Inputs from these devices are generally
asynchronous to the process or task currently
executing, so you cannot always predict when
the event will occur.
 Using interrupts enables the processor to
continue processing until an event occurs,
at which time the processor can address the
event. This interrupt-driven approach also
enables a faster response time to events than
a polled approach, in which a program active-
ly samples the status of an external device in
a synchronous manner.

THE ZYNQ SOC’S INTERRUPT STRUCTURE
As processors get more advanced, there are a
number of sources interrupts can come from.
The Zynq SoC uses a Generic Interrupt Con-

Real-time computing often
requires interrupts to respond
quickly to events. It’s not hard
to design an interrupt-driven
system once you grasp how
the interrupt structure of the

Zynq SoC works.

X P L A N A N T I O N : F P G A 1 0 1

 40 Xcell Journal Second Quarter 2014

troller (GIC), as shown in Figure 1, to process interrupts.
The GIC handles interrupts from the following sources:

• Software-generated interrupts – There are 16 such inter-
rupts for each processor. They can interrupt one or both
of the Zynq SoC’s ARM® Cortex™-A9 processor cores.

• Shared peripheral interrupts – Numbering 60 in total,
these interrupts can come from the I/O peripherals, or to
and from the programmable logic (PL) side of the device.
They are shared between the Zynq SoC’s two CPUs.

• Private peripheral interrupts – The five interrupts in
this category are private to each CPU—for example
CPU timer, CPU watchdog timer and dedicated
PL-to-CPU interrupt.

 The shared peripheral interrupts are very interesting, as
they are very flexible. They can be routed to either CPU from
the I/O peripherals (44 interrupts in total) or from the FPGA
logic (16 interrupts in total). However, it is also possible to
route interrupts from the I/O peripherals to the programmable
logic side of the device, as shown in Figure 2.

PROCESSING THE INTERRUPTS ON THE ZYNQ SOC
When an interrupt occurs within the Zynq SoC, the pro-
cessor will take the following actions:

1. The interrupt is shown as pending.

2. The processor stops executing the current thread.

3. The processor saves the state of the thread in the stack
to allow processing to continue once it has handled
the interrupt.

4. The processor executes the interrupt service routine,
which defines how the interrupt is to be handled.

5. The processor resumes operation of the interrupted
thread after restoring it from the stack.

 Because interrupts are asynchronous events, it is pos-
sible for multiple interrupts to occur at the same time. To
address this issue, the processor prioritizes interrupts such
that it can service the highest-priority interrupt pending first.
 To implement this interrupt structure correctly, we will
need to write two functions: an interrupt service routine
to define the actions that will take place when the inter-
rupt occurs, and an interrupt setup to configure the inter-
rupt. The interrupt setup is a reusable routine that allows
for constructing different interrupts. Generic for all inter-
rupts within a system, the routine will set up and enable
the interrupts for the general-purpose I/O (GPIO).

USING INTERRUPTS IN SDK
Interrupts are supported and can be implemented on a
bare-metal system using the standalone board support
package (BSP) within the Xilinx Software Development Kit

Application Processor Unit (APU)

•
•
•

ARM Cortex™-A9
CPU

ARM Cortex™-A9
CPU

Central
Interconnect

DMA
Chennels

Clock
Generation

SMC Timing
Calulation

I/O Peripherals

Bank0
MIO

(15:0)

I/O
MUX
(MIO)

Bank1
MIO

(53:15)

Resets

Extended
MIO (EMIO) PS-PL

Clock Ports

32b GP
AXI

Master
Ports

32b GP
AXI

Slave
Ports

DMA8
Channel

Config
AES/
SHA

IRQ High Performance
AXI 32b/64b Slave

Ports

XADC

DMA Syns

DEVC

DAP

Programmable
Logic to Memory

Inerconnect

SPI 0
SPI 1
I2C 0
I2C1
CAN 0
CAN 1
UART 0
UART 1
GPIO
SD 0
SD1
USB 0
USB 1
ENET 0
ENET 1

GIC

General
Settings

SRAM/NOR
NAND
QUAD SPI

Syetem Level
Control Regs

FLASH Memory
Interfaces

SWDT
TTC

CoreSight
Components

64b
AXI
ACP
Slave
Ports

OCM
Interconnect

256 KB
SRAM

DR2/3,LPDDR2
Controller

512 KB L2 Cache and Controller

Snoop Control unit

Memory Interfaces

Processing System (PS)

Programmable Logic (PL)

 12 13 14 15
 8 9 10 11
 4 5 6 7
 0 1 2 3

Figure 1 – The Generic Interrupt Controller is circled in red.

X P L A N A N T I O N : F P G A 1 0 1

 Second Quarter 2014 Xcell Journal 41

(SDK). The BSP contains a number of functions that greatly
ease this task of creating an interrupt-driven system. They
are provided within the following header files:

• Xparameters.h – This file contains the processor’s
address space and the device IDs.

• Xscugic.h – This file holds the drivers for the configuration
and use of the GIC.

• Xil_exception.h – This file contains exception functions
for the Cortex-A9.

 To address a hardware peripheral, we need to know the
address range and the device ID for the devices we wish
to use—in other words, the GIC, which is provided mostly
within the BSP header file xparameters. However, the inter-
rupt ID is provided from xparameters_ps.h (there is no need
to declare this header file within your source code as it is
included in the xparameters.h file). We can use this interrupt
labeled “ID” (it’s the GPIO_Interrupt_ID) within our source
file as shown below:

#define GPIO_DEVICE_ID XPAR_XGPIOPS_0_DEVICE_ID
#define INTC_DEVICE_ID XPAR_SCUGIC_SINGLE_DEVICE_ID
#define GPIO_INTERRUPT_ID XPS_GPIO_INT_ID

 For this simple example, we will be configuring the Zynq
SoC’s GPIO to generate an interrupt following a button

push. To set up the interrupt, we will need two static global
variables and the interrupt ID defined above to make the
following:

static XScuGic Intc; // Interrupt Controller Driver
static XGpioPs Gpio; //GPIO Device

 Within the interrupt setup function, we will need to ini-
tialize the Zynq SoC’s exceptions; configure and initialize
the GIC; and connect the GIC to the interrupt-handling hard-
ware. The Xil_exception.h and Xscugic.h files provide the
functions we need to accomplish this task. The result is the
following code:

//GIC config
XScuGic_Config *IntcConfig;
Xil_ExceptionInit();

//initialize the GIC
IntcConfig = XScuGic_LookupConfig(INTC_DEVICE_ID);

XScuGic_CfgInitialize(GicInstancePtr, IntcConfig,
IntcConfig->CpuBaseAddress);

//connect to the hardware
Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_IN-
T,(Xil_ExceptionHandler)XScuGic_InterruptHandler,
 GicInstancePtr);

 When it comes to configuring the GPIO to function as an
interrupt within the same interrupt configuration routine,

Figure 2 – These are the interrupts available between the processing system and the programmable logic.

X P L A N A N T I O N : F P G A 1 0 1

 42 Xcell Journal Second Quarter 2014

we can configure either a bank or an individual pin. This task
can be achieved using functions provided within xgpiops.h,
for example:

voi�d�XGpioPs_IntrEnable(XGpioPs *InstancePtr, u8
Bank, u32 Mask);

voi�d�XGpioPs_IntrEnablePin(XGpioPs *InstancePtr,
int Pin);

 Naturally, you will also need to configure the interrupt
correctly. For instance, do you wish it to be edge triggered or
level triggered? If so, which edge and level can be achieved
using the function?

void�XGpioPs_SetIntrTypePin(XGpioPs *InstancePtr,
int Pin, u8 IrqType);

where the IrqType is defined by one of the five definitions
within xgpiops.h. They are:

#defi�ne XGPIOPS_IRQ_TYPE_EDGE_RISING 0 /**<
Interrupt on Rising edge */

#defi�ne XGPIOPS_IRQ_TYPE_EDGE_FALLING 1 /**<
Interrupt Falling edge */

#defi�ne XGPIOPS_IRQ_TYPE_EDGE_BOTH 2 /**<
Interrupt on both edges */

#defi�ne XGPIOPS_IRQ_TYPE_LEVEL_HIGH 3 /**<
Interrupt on high level */

#defi�ne XGPIOPS_IRQ_TYPE_LEVEL_LOW 4 /**<
Interrupt on low level */

 If you decide to use the bank enable, you need to know which
bank the pin or pins you wish to enable interrupts are on. The
Zynq SoC supports a maximum of 118 GPIOs. In this configura-
tion, all of the MIOs (54 pins) are being used as GPIO along with
the EMIOs (64 pins). We can break this configuration into four
banks, with each bank containing up to 32 pins.
 This setup function will also define the interrupt service
routine, which is to be called when the interrupt occurs that
uses the function:

XGpioPs_SetCallbackHandler(Gpio,
 (void *)Gpio, IntrHandler);

 The interrupt service routine can be as simple or as com-
plicated as the application defines. For this example, it will
toggle the status of an LED on and off each time a button is
pressed. The interrupt service routine will also print out a
message to the console each time the button is pressed.

static void IntrHandler(void *CallBackRef, int
Bank, u32 Status)
{
 int delay;
 XGpioPs *Gpioint = (XGpioPs *)

CallBackRef;
 XGpioPs_IntrClearPin(Gpioint, pbsw);
 printf(“****button pressed****\n\r”);

toggle = !toggle;
 XGpioPs_WritePin(Gpioint, ledpin, toggle);

for(delay = 0; delay < LED_DELAY; delay++)
//wait

 {}
}

PRIVATE TIMER EXAMPLE
The Zynq SoC has a number of timers and watchdogs avail-
able. These are either private to a CPU or a shared resource
available to both CPUs. Interrupts are required if you are to
use these components efficiently in your design. The timers
and watchdogs include the following:

• CPU 32-bit timer (SCUTIMER), clocked at half the CPU
frequency

• CPU 32-bit watchdog (SCUWDT), clocked at half the CPU
frequency

• Shared 64-bit global timer (GT), clocked at half the CPU
frequency (each CPU has its own 64-bit comparator; it is
used with the GT, which drives a private interrupt for
each CPU)

• System watchdog timer (WDT), which can be clocked
from the CPU clock or an external source

• A pair of triple timer counters (TTCs), each containing
three independent timers. The TTCs can be clocked by the
CPU clock or by means of an external source from the
MIO or EMIO in the programmable logic.

 To gain the maximum benefit from the available timers
and watchdogs, we need to be able to make use of the Zynq
SoC’s interrupts. The simplest of these to configure is the pri-
vate timer. Like most of the Zynq SoC’s peripherals, this tim-
er comes with a number of predefined functions and macros
to help you use the resource efficiently. They are contained
within the following:

#include�“xscutimer.h”

 This file contains functions (macros) that will provide a
number of capabilities, including initialization and self-test.
The functions within this file will also start and stop the tim-
er, and manage the timer (restart it; check to see if it has
expired; load the timer; enable/disable auto loading). Anoth-
er of their jobs is to set up, enable, disable, clear and man-
age the timer interrupts. Finally, these functions also get and
then set the prescaler.

The timer itself is controlled via the following four
registers:

• Private Timer Load Register – This register is used in auto
reload mode. It contains the value that is reloaded into the
Private Timer Counter Register when auto reload is enabled.

• Private Timer Counter Register – This is the actual
counter itself. When enabled, once this register reaches
zero the interrupt event flag is set.

• Private Timer Control Register – The control register
enables or disables the timer, auto reload mode and
interrupt generation. It also contains the prescaler for
the timer.

 Second Quarter 2014 Xcell Journal 43

X P L A N A N T I O N : F P G A 1 0 1

 //enable interrupt on the timer
 XScuTimer_EnableInterrupt(TimerInstancePtr);

 Where TimerIntrHandler is the name of the function that
is called when the interrupt occurs, the timer interrupt must
be enabled on the GIC and within the timer itself.

The timer interrupt service routine is very simple. All it
does is to clear the pending interrupt and write out a message
over the STDOUT, as follows:

static�void�TimerIntrHandler(void�*CallBackRef)
{

 XScuTimer *TimerInstancePtr =
 (XScuTimer *) CallBackRef;
 XScuTimer_ClearInterruptStatus(TimerInstancePtr);
� printf(“****Timer Event!!!!!!!!!!!!!****\n\r”);

 With this action complete, the final thing to do is to mod-
ify the GPIO interrupt service routine to start the timer each
time the button is pushed, as such:

 //load timer
 XScuTimer_LoadTimer(&Timer, TIMER_LOAD_VALUE);
 //start timer
 XScuTimer_Start(&Timer);

 To do this we first load the timer value into the timer
and then call the timer start function. Now we can again
clear the pushbutton interrupt and resume processing, as
seen in Figure 3.

Many engineers initially approach an interrupt-driv-
en system design with trepidation. However, the Zynq
SoC’s architecture, with the Generic Interrupt Controller
coupled with the drivers provided with the SDK, enables
you to get an interrupt-driven system up and running very
quickly and efficiently.

• Private Timer Interrupt Status Register – This register
contains the private timer interrupt status event flag.

 As for using the GPIO, the timer device ID and timer in-
terrupt ID that are needed to set up the timer are contained
within the XParameters.h file. Our example will use the
pushbutton interrupt that we developed previously. When
the button is pressed, the timer will load and start to run
(not in auto reload mode). Upon expiration of the timer,
an interrupt will be generated that will write a message out
over the STDOUT. The interrupt will then be cleared to wait
until the next time the button is pressed. This example will
always load the same value into the counter; hence with the
declarations at the top of the file, the timer count value is
declared, as follows:

#define�TIMER_LOAD_VALUE 0xFFFFFFFF

 The next stage is to configure and initialize the private
timer and load the timer count value into it.

 //timer initialisation
 TMRConfigPtr = XScuTimer_LookupConfig
 (TIMER_DEVICE_ID);
 XScuTimer_CfgInitialize(&Timer,
 TMRConfigPtr,TMRConfigPtr->BaseAddr);
//load the timer
 XScuTimer_LoadTimer(&Timer, TIMER_LOAD_VALUE);

 We also need to update the interrupt setup subroutine to
connect the timer interrupts to the GIC and enable the timer
interrupt.

 //set up the timer interrupt
 XScuGic_Connect(GicInstancePtr, TimerIntrId,
(Xil_ExceptionHandler)TimerIntrHandler,
 (void *)TimerInstancePtr);
 //enable the interrupt for the Timer at GIC
 XScuGic_Enable(GicInstancePtr, TimerIntrId);

Figure 3 – This screen shows an example of the GPIO and timer interrupt event outputs.

X P L A N AT I O N : F P G A 1 0 1

 44 Xcell Journal Second Quarter 2014

Calculating
Mathematically
Complex Functions
by Adam P. Taylor
Head of Engineering – Systems
e2v Technologies
aptaylor@theiet.org

X P L A N A N T I O N : F P G A 1 0 1

 Second Quarter 2014 Xcell Journal 45

T
hanks to their flexibility and per-
formance, FPGAs have found
their way into a number of indus-
trial, science, military and other
applications that require the cal-

culation of complex mathematical problems
or transfer functions. It is not uncommon to
see tight accuracy and calculation latency
times in the more critical applications.
 When using an FPGA to implement math-
ematical functions, engineers normally
choose fixed-point mathematics (see Xcell
Journal issue 80, “The Basics of FPGA
Mathematics,” http://issuu.com/xcelljour-
nal/docs/xcell80/44?e=2232228/2002872).
Also, there are many algorithms, such as
CORDIC, that you can use to calculate tran-
scendental functions (see Xcell Journal is-
sue 79, “How to Use the CORDIC Algorithm
in Your FPGA,” http://www.xilinx.com/
publications/archives/xcel l/Xcell79.pdf).
 However, when confronting functions that
are very mathematically complex, there are
more efficient ways of dealing with them than
by implementing the exact demanding func-
tion within the FPGA. To understand these
alternative approaches—especially one of
them, polynomial approximation—let us first
define the problem.

LAYING OUT THE PROBLEM
One such example of a complex mathematical
transfer function would be within an FPGA
that monitors a platinum resistance ther-
mometer (PRT) and converts the resistance
of the PRT into a temperature. This conver-
sion typically occurs using a Callendar-Van
Dusen equation. In its simplified form, shown
below, this equation can determine tempera-
tures between 0oC and 660oC.

where R
0
 is the resistance at 0oC and a and

b are coefficents of the PRT and t is the
temperature.
 In reality, we want to go from a resistance
to a temperature. To do so, we need to rear-
range the equation so that the result is the
temperature for a given resistance. Most sys-
tems that use a PRT will design electronics
to measure the resistance of the PRT using
an electronic circuit, leaving the FPGA to cal-

One of the great benefits
of FPGAs is that you can
use their embedded DSP
blocks to tackle the knottiest
mathematical transfer functions.
Polynomial approximation is
one good way to do it.

http://issuu.com/xcelljournal/docs/xcell80/44?e=2232228/2002872
http://www.xilinx.com/publications/archives/xcell/Xcell79.pdf

X P L A N A N T I O N : F P G A 1 0 1

 46 Xcell Journal Second Quarter 2014

 Engineers often call the DSP slices
DSP48s, due to the 48-bit accumulator
they provide. However, these slices
also supply 25 x 18-bit-wide multipliers
and addition/subtraction capabilities,
among many other faculties. It is these
internal RAM structures and DSP slices
that you can use to implement transfer
functions with greater ease.

POLYNOMIAL APPROXIMATION
One method that utilizes the DSP- and
RAM-rich architecture of the FPGA
is polynomial approximation. To use
this technique, you must first plot
the mathematical function, covering
the input value range in a mathemati-
cal program such as MATLAB® or Ex-
cel. You can then add a polynomial
trend line to the data set in question,
such that the equation for the trend
line can then be implemented within
the FPGA in place of the mathemati-
cally complex function, provided the
trend-line equation meets the accu-
racy requirements.

culate the temperature using the rear-
ranged equation below.

 Implementing this equation within
an FPGA may be daunting for even a
seasoned FPGA engineer. Plotting the
obtained resistance against temperature
results in a graph as shown in Figure 1.
From the graph, you can clearly see the
nonlinearity of the response.
 Implementing the rearranged trans-
fer function in an FPGA directly could
be a significant challenge, both in terms
of actual design effort required and
then in validation (ensuring accuracy
and function across boundary and cor-
ner-case conditions). Many engineers
will look for different methods to imple-
ment the function in a way that will re-
duce design and validation effort so as
to protect project time scales. One pos-
sible approach would be using a lookup
table to store a number of points on the

curve with linear interpolation between
the points within the LUT.
 This approach may fit the bill, depend-
ing upon the accuracy requirement and
number of elements stored within the
lookup table. However, you will still need
to include a linear interpolator function
within the design. This function can be
mathematically sophisticated and will
often include a non-power-of-two divide,
which adds to the complexity.

CAPITALIZE ON FPGA RESOURCES
Instead, there is another method you can
use to implement these types of transfer
functions—one that capitalizes upon the
very nature of the FPGA. Modern FPGAs
like the Xilinx® Spartan®-6 and the 7 se-
ries Artix®, Kintex® and Virtex® lines con-
tain much more than just the traditional
lookup tables and flip-flops. They also
come with built-in DSP slices, Block RAM
and distributed RAM, along with many
advanced hard IP cores such as PCIe®
and Ethernet endpoints, high-speed serial
links and so on.

900,000

800,000

700,000

600,000

500,000

400,000

300,000

200,000

100,000

0.0000

100 150 200 250 300 350 400

Temperature vs. Resistance

Te
m

p
er

at
ur

e

Resistance

Figure 1 – The plotted transfer function

X P L A N A N T I O N : F P G A 1 0 1

 Second Quarter 2014 Xcell Journal 47

 Most mathematical programs capable
of adding a polynomial trend line allow
you to select the order, or number of
polynomial terms. The larger the order,
the more accurate the fit should be—but
the more terms you will need to imple-
ment within the FPGA. When perform-
ing this process for the transfer function
example we are using in Microsoft Ex-
cel, we obtained the trend line and equa-
tion seen in Figure 2. This example used
the polynomial order of four.

900,000

800,000

700,000

600,000

500,000

400,000

300,000

200,000

100,000

0.0000

100 150 200 250 300 350 400

Temperature vs. Resistance

Te
m

p
er

at
ur

e

Resistance

y = 2E-09x4 - 4E-07x3 + 0.0011x2 +
2.403x -251.26

 Having obtained the polynomial
fit for the transfer function we want
to implement, we can then dou-
ble-check for accuracy against the
original transfer function using the
same analysis tool, in this case Excel.
For the case in point where tempera-
ture is being monitored, it may be
that the end measurement has to be
accurate to +/-1oC, not a particular-
ly demanding accuracy requirement.
Still, it may prove difficult to achieve

using just one polynomial equation,
depending upon the range of mea-
surements and the transfer function
you are implementing. How can we
address this problem?

MULTIPLE TREND LINES
SELECTED BY INPUT VALUE
Should one polynomial equation not
provide sufficient accuracy over the
entire transfer function input range,
just add more. It is still possible to

Figure 2 – Trend line and polynomial equation for the temperature transfer function

Should one polynomial equation not provide sufficient
accuracy over the entire transfer function input range,

just add more. You can still rely on this approach so long
as you generate a number of polynomial constants for

use across the input range.

X P L A N A N T I O N : F P G A 1 0 1

 48 Xcell Journal Second Quarter 2014

use this approach so long as you gen-
erate a number of polynomial con-
stants for use across the input range.
Thus, once the input value goes out-
side specific bounds, a new set of
constants is loaded.
 Continuing with the tempera-
ture example, the first polynomial
equation provides +/- 1oC of accura-
cy between 0o and 268oC. For many
applications this will be more than
sufficient. Suppose that we require
an extended operating range and tol-
erance to 300oC, which would mean
our initial approach did not meet the
design requirements. Using a seg-
mented approach, we can address
this problem by plotting the range be-
tween 269oC and 300oC and obtaining
a different polynomial equation that
will provide more accuracy for this
output range (see Figure 3).
 In short, the implementation uses
the first polynomial constants until
the input value goes above a precalcu-

lated range that corresponds to 268oC.
Above that range, the second set of
constants is used to maintain the accu-
racy requirements.
 In this way, you can break a transfer
function into a number of segments
to achieve the desired accuracy. You
may opt to space these segments uni-
formly across the transfer function—
that is, split them into 10 segments of
equal value of X. Alternatively, you
can make them nonuniform and seg-
ment them as required to achieve the
desired accuracy, focused upon areas
of the transfer function where accura-
cy is harder to obtain.
 Among the trade-offs to consider
when deciding upon your implementa-
tion, keep in mind that a uniform ap-
proach may require a larger memory
footprint than a nonuniform approach.
Depending upon the transfer function
you are implementing, going with a
nonuniform approach could result in a
considerable saving.

HOW DOES IT COMPARE?
Of course, as I mentioned earlier
there are other methods you can use
to implement transfer functions. The
four most commonly used methods
aside from polynomial approxima-
tion are software routines, lookup
tables, a lookup table with interpola-
tion and CORDIC.
 The use of software to calculate the
transfer function complicates the sys-
tem architecture due to the need to
add a processor (with an associated in-
crease in design complexity, BOM cost
and so on). Even if the design team mit-
igates this drawback by using a system-
on-chip such as the Xilinx Zynq®-7000
All Programmable SoC, challenges still
remain. For starters, the time it takes to
calculate the transfer function in soft-
ware would be much longer than can
be achieved in logic, reducing the sys-
tem response time. In fact, calculation
of transfer functions such the one used
in our sample design is a classic exam-

Te
m

p
er

at
ur

e

Resistance

Focusing Temperature vs. Resistance

199 201 203 205 207 209 211

310,000

300,000

290,000

280,000

270,000

260,000

250,000

y = 2E-09x4 - 3E-08x3 + 0.001x2 + 2.4146x - 251.71

Figure 3 – Plotting between 269oC and 300oC to provide a more accurate result

 Second Quarter 2014 Xcell Journal 49

X P L A N A N T I O N : F P G A 1 0 1

tions such as sine, cosine, multipli-
cation, division, square root and so
on. Therefore, it is possible to imple-
ment transfer functions exactly using
a combination of CORDIC algorithms
and basic mathematical blocks. The
technique can result in higher pre-
cision. However, for a complicated
transfer function, this gain in preci-
sion will come at the cost of increased
design and verification time. There
will of course be an impact on the op-
erating frequency of a device imple-
mented in this way.
 Polynomial approximation there-
fore presents a middle ground among
the four alternative options, offering a
good trade-off in performance, accura-
cy and implementation footprint.

EASE OF IMPLEMENTATION
Every engineer wants to produce an
FPGA that has an optimal utilization of
device resources. Polynomial approxi-
mation allows you to benefit from the
multiplier- and RAM-rich environment
provided by the FPGAs, and to use these
resources to easily implement what at
first might appear to be a very complex
mathematical transfer function.

ple of where the processing should be
offloaded to the programmable logic
side of the Zynq SoC.
 The efficacy of the second approach—
using a lookup table containing precalcu-
lated values for the input—can vary de-
pending upon the range and width of the
input values. At times, the result will very
quickly be a very large LUT that requires
a lot of RAM within the FPGA. Depend-
ing upon the FPGA, this approach could
require more resources than are avail-
able, or it might cause conflicts with re-
quirements for other modules within the
design. On the plus side, of course, this
method will result in a very fast “calcula-
tion” of the result.
 The third potential approach—a
lookup table with interpolation—is
one we explored earlier and is an at-
tempt to reduce the number of mem-
ory locations needed with a full LUT
approach. This technique does re-
quire the engineer to write a linear in-
terpolation function within the FPGA,
which can be a little involved. It is,
however, still much simpler than the
final option: CORDIC.
 A CORDIC algorithm is capable of
implementing transcendental func-

Polynomial approximation
presents a middle ground
among the four alternative
methods of implementing

transfer functions, offering
a good trade-off in

performance, accuracy
and footprint.

We speak FPGA.

Everything FPGA.

MARS ZX3
Zynq™-7020 SoC Module

 � Xilinx® Zynq-7020 SoC FPGA
 � Up to 1 GB DDR3L SDRAM
 � 16 MB QSPI flash
 � 512 MB NAND flash
 � USB 2.0
 � Gigabit Ethernet
 � 85,120 LUT4-eq
 � 108 user I/Os
 � 3.3 V single supply
 � 67.6 × 30 mm SO-DIMM

1.

MERCURY KX1
Kintex™-7 FPGA Module

2.

 � Xilinx® Kintex™-7 FPGA
 � Up to 2 GB DDR3L SDRAM
 � 16 MB QSPI flash
 � PCIe® x4 endpoint
 � 4 × 6.6/10.3125 Gbps MGT
 � USB 3.0 Device
 � 2 × Gigabit Ethernet
 � Up to 406,720 LUT4-eq
 � 178 user I/Os
 � 5-15 V single supply
 � 72 × 54 mm

Streaming,
made simple.

One tool for all FPGA communications.
Stream data between FPGA and host over
USB 3.0, PCIe®, or Gigabit Ethernet – all with
one simple API.

FPGA MANAGER
IP Solution

3.

PCIe® Gen2
USB 3.0

Gigabit Ethernet

C/C++
C#/.NET
MATLAB®
LabVIEW™

FPGA

PROFINET IP Core4.

 � Optimized for Xilinx FPGA and Zynq SoC
 � IRT cycle times as low as 31.25 µs
 � Hardware IEEE 1588 PTP implementation
 � Isochronous traffic can bypass the software stack

Design Center · FPGA Modules
Base Boards · IP Cores

We speak FPGA.

http://www.enclustra.com

X P L A N AT I O N : F P G A 1 0 1

 50 Xcell Journal Second Quarter 2014

Make Slow Software Run
Fast with Vivado HLS

Anyone plagued
by code bottlenecks
should explore the
one-two punch of
high-level synthesis
and the Zynq SoC.

X P L A N A N T I O N : F P G A 1 0 1

 Second Quarter 2014 Xcell Journal 51

Have you ever written some software
that, despite your best coding efforts,
didn’t run as fast as desired? I have.
Have you thought, “If only there were
an easy way to put some of the code into
multiple custom processors or custom
hardware that wasn’t so expensive”? Af-
ter all, your application is one of many,
and custom hardware takes time and
money to create. Or does it?
 I began rethinking this proposition
recently when I heard about the Xilinx®
high-level synthesis tool, Vivado® HLS.
In combination with the Zynq®-7000 All
Programmable SoC, which combines a
dual-core ARM® Cortex™-A9 processor
with an FPGA fabric, high-level synthe-
sis opens up new possibilities in design.
This class of tools creates highly tuned
RTL from C, C++ or SystemC source
code. Many purveyors of this technol-
ogy exist, and the rate of adoption has
been increasing in recent years.
 So, how hard would it be to migrate
some of that slow code into hardware,
if indeed I could simply use Vivado HLS
to do the more demanding computa-
tions? After all, I usually wrote my code
in C++, and Vivado HLS used C/C++
as an input. The ARM processor cores
meant I could run the bulk of my soft-
ware in a conventional environment. In
fact, Xilinx has even made available a
software development kit (SDK) and
PetaLinux for this purpose.

by David C. Black
Senior Member of Technical Staff
Doulos
david.black@doulos.com

ARCHITECTURAL CONCERNS
As I started to think about this trans-
formation from a software perspective,
I grew concerned about the software
interface. After all, HLS creates hard-
ware dedicated to processing hardware
interfaces. I needed something easy to
access, like a coprocessor or hardware
accelerator, to make the software go
faster. Also, I didn’t want to write a
new compiler. To make it easy to ex-
change data with the rest of the soft-
ware, the interface needed to look like
simple memory locations where we
could place the inputs and later read
back the results.
 Then I made a discovery. Vivado HLS
supports the idea of creating an AXI
slave with relatively little effort. This
capability started me thinking an accel-
erator might not be so difficult to create
after all. Thus, I found myself coding up
a simple example to explore the possi-
bilities. I was pleasantly surprised with
how it turned out.

Let’s take a walk through the ap-
proach I took and consider the results.
 For my example, I chose to model a
set of simple matrix operations such as
add and multiply. I didn’t want it to be
constrained to a fixed size, so I would
have to provide both the input arrays
and their respective sizes. An ideal in-
terface would put all the values as sim-
ple arguments to a function, such as the
code in Figure 1.
 The interface to the hardware would
need to have a simple way to map the
function arguments to memory loca-
tions. Figure 2 shows a memory layout
to support this mapping. The registers
would hold information about how
matrices were laid out and what the
desired operations would be. The com-
mand register would indicate which
operation to do. This would allow me
to combine several simple operations
into one piece of hardware. The status
register would simply be a way to know
if the operation was in progress or had
finished successfully. Ideally, the de-
vice would also support an interrupt.

H

mailto:david.black@doulos.com

X P L A N A N T I O N : F P G A 1 0 1

 52 Xcell Journal Second Quarter 2014

and conveniently PetaLinux provides
a mechanism known as the User I/O
device. UIO allows a simple approach
to mapping the new hardware into
user memory space, and provides the

ability to wait for an interrupt. This
means you avoid the awkward time
and process of writing a device driv-
er. Figure 4 illustrates the system.
 There are of course a few drawbacks
to this approach. For instance, the
UIO device cannot be used with DMA,
so you must construct matrices in the
device memory and manually copy
them out when done. A custom device
driver in the future could address that
issue if needed.

SYNTHESIZING THE HARDWARE
WITH VIVADO HLS
Back to the topic of synthesizing the AXI
slave. How difficult would this be? I found
the coding restrictions to be quite reason-
able. Most of the C++ language could be
used with the exception of the dynamic
allocation of memory.

After all, hardware doesn’t manufac-
ture itself during operation. This fact
also restricts the use of the Standard
Template Library (STL) functions, be-
cause they make heavy use of dynamic
allocation. As long as the data remains
static, most features are available. At
first this task appeared onerous, but I re-
alized it wasn’t a huge deal. Also, Vivado
HLS allows for C++ classes, templates,
functions and operator overloading.
My matrix operations could easily be
wrapped in a custom matrix class.
 Adding the I/O to create an AXI slave
was easy. Simply add some pragmas to
indicate which ports participate and
what protocol they would use.

 Going back to the hardware design, I
learned that Vivado HLS allows for array
arguments to specify small memories.
Thus, the functionality would be described
with a function such as Figure 3 shows.

 Assuming the ability to synthesize
the AXI slave, how would this fit
with the software? My normal coding
environment assumes Linux. Fortu-
nately, Xilinx provides PetaLinux,

Figure 1 – Example call to accelerator

Figure 2 – Register summary table

 Addr Register name Dir Bits Contents

 0 Matrix0_ptr RW 32 Address of matrix 0 data

 4 Matrix0_shape RW 32 Rows matrix 0 Cols matrix 0

 8 Matrix1_ptr RW 32 Address of matrix 1 data

 12 Matrix1_shape RW 32 Rows matrix 1 Cols matrix 1

 16 Matrix2_ptr RW 32 Address of matrix 2 data

 20 Matrix2_shape RW 32 Rows matrix 2 Cols matrix 2

 24 Matrix3_ptr RW 32 Address of matrix 3 data

 28 Matrix3_shape RW 32 Rows matrix 3 Cols matrix 3

 32 -reserved- - 32

 36 -reserved- - 32

 40 Command RW 32 0 enum

 44 Status RW 32 0 enum

8192 x 32 memory

Figure 3 – Accelerator function API

int Accelerator(int registers[16], int memory[8192]);

Matrix operand1(5,10), operand2(10,5), product(10,10);
int status;
status = matrix_op(MUL, operand1, operand2, product); // product = operand1 * operand2;
if (status != 0) cout << “ERROR: multiplication failed” << endl;

X P L A N A N T I O N : F P G A 1 0 1

 Second Quarter 2014 Xcell Journal 53

Figure 4 – System diagram

Zynq-7000 All Programmble SoC

Programmable Logic (FPGA fabric)

Processing System (Dual Cortex-A9 MPCore)

Software
Application

Linux OS
(drivers)

Software
Accelerator

AXI Slave
Adpater

Figure 5 – Steps in design flow

Code
Application

Verify
Function

Identify
Candidates

Integrate
Software

Refactor
Code

Verify
Function

High-Level
Synthesis

Analyze
Schedule

Verify
Function

Verify
Function

Integrate
IP

Synthesize
IP

Analyze
Timing

Place and
Route

Validate
Performance

Bitstream

Original
Application +
Test Stimulus

RTLIP

Application +
HLS Drivers

Refactored
Application
(Testbench)

Extracted
Function

(HLS input)

 Running the synthesis tool was also
fairly easy as long as I didn’t push all
the knobs. Figure 5 shows the overall
steps involved, which I won’t describe
in detail here. Vivado HLS needs a bit
of direction as to the target technol-
ogy and clock speed. After that the
process involved keeping an eye on
the reports for violations of policy,
and studying the analysis report to
ensure Vivado HLS had done what
I expected. Tool users need to have
some appreciation for the hardware
aspects, but technology classes exist
to cover that issue. There is also the
matter of running simulations both
before and after synthesis to verify
the expected behavior.
 The Vivado IP Integrator made
connecting the AXI slave into the
Zynq SoC hardware a breeze, and re-
moved concerns that signals would
be hooked up incorrectly. Xilinx
even has a profile for my develop-
ment system, the ZedBoard, and IP
Integrator exports data for the soft-
ware development kit.

UNCLOGGING THE BOTTLENECKS
I am truly pleased with the results,
and hope to do more with this chip-
and-tool set combination. I have not
explored all the possibilities. For in-
stance, Vivado HLS also supports an
AXI master interface. AXI would al-
low the accelerator to copy the matri-
ces from external memory (although
security issues might exist for this
case). Nevertheless, I highly recom-
mend that anyone looking at code
bottlenecks in their software should
look at this tool set. Ample training
classes, resources and materials exist
to enable a fast ramp, including those
from Doulos. See www.doulos.com
for more information.

Running the synthesis tool was fairly easy
as long as I didn’t push all the knobs.

http://www.doulos.com

T O O L S O F E X C E L L E N C E

 54 Xcell Journal Second Quarter 2014

Xilinx Opens
a Tcl Store
by Greg Daughtry
Director of Product Marketing
Xilinx, Inc.
greg.daughtry@xilinx.com

T O O L S O F X C E L L E N C E

 Second Quarter 2014 Xcell Journal 55

Open-source
repository for
sharing Tool
Command Language
scripts is up
and running at
GitHub.com.

O
ver the last five years
Xilinx has had a stra-
tegic focus on design
methodology and tools
to address productiv-
ity, to accelerate the

design cycle and to help bring products
to market faster by providing the indus-
try’s most advanced and comprehensive
development environment.
 Even with the productivity improve-
ments of the next-generation Vivado®
Design Suite combined with the com-
prehensive UltraFast™ Design Meth-
odology, designing with today’s All Pro-
grammable devices can be challenging.
Designers must integrate hundreds of
highly parameterized IP cores, hun-
dreds of thousands of placeable ob-
jects and multiple millions of logic cells
with Xilinx® All Programmable FPGAs,
3D ICs and SoCs. There are an infinite
number of permutations to grapple with
as designers push the boundaries with
complex designs.
 With the release of Vivado 2014.1 in
April, Xilinx is taking another large step
forward in designer productivity by
hosting an open-source repository for
sharing Tool Command Language (Tcl)
code. This repository, called the Xilinx
Tcl Store, will make it a lot easier to
find and share Tcl (pronounced “tick-
le”) scripts that other engineers have
developed. With the power of Tcl, these
scripts can extend the considerable
core functionality of the Vivado Design
Suite, enhancing productivity and ease
of use. The Tcl Store is open to the user
community to contribute to the greater
good of all designers by publishing Tcl
code that others might find useful.

DESIGNS GROWING
MORE COMPLEX
The Vivado Design Suite was built on
an open, scalable data model. As an
open system, one of the keys to en-
abling productivity is making the tools
smarter, and providing more custom-
ization choices and analysis capabil-
ities so the designer can be better in-

formed and drive the tools to provide
optimal implementations.
 Since the release of the Vivado De-
sign Suite in 2012, there has been an ex-
plosion of Tcl scripting to perform tasks
both small and large. It’s increasingly
important for designers to understand
and utilize Tcl, since this is the basis for
Vivado’s XDC constraint language.
 The Tcl commands allow you to de-
velop and scrub timing constraints in-
teractively, which saves compilation
time and debug effort. The core com-
mands allow object queries that can be
used for custom reporting, and that can
execute very elaborate tool control. The
Vivado Design Suite makes it possible to
also develop your own DRC and linting
checks, along with highly customized
flows to achieve better quality of results
or faster run-times. Tcl also enables de-
signers to make targeted design chang-
es through engineering change order
(ECO) operations.
 The increased productivity provided
with Tcl, ease of creation and readabil-
ity make this language prime for the
sharing of useful code. Up to now this
sharing has largely occurred on an ad
hoc basis, via e-mail and user forums.
Some companies have established their
own internal libraries of Tcl for use
within their projects.
 Now Xilinx is taking Tcl sharing to the
next level with its new Xilinx Tcl Store.

WELCOME TO THE TCL STORE
The Xilinx Tcl Store provides exam-
ples of how to write custom reports,
control specific tool behavior, make
custom netlist changes and integrate
with third-party electronic design auto-
mation (EDA) tools such as simulation,
synthesis, timing and power analysis,
and linting tools.
 Natively accessed from the Vivado
Integrated Design Environment (IDE),
the Tcl Store enables users to select
and install collections of Tcl scripts
called “apps” directly from within the
tool. Once installed, these apps have
commands that appear just like built-

T O O L S O F X C E L L E N C E

 56 Xcell Journal Second Quarter 2014

INSTALLATION AND USE
Designers can access the Xilinx Tcl
Store by means of an icon on the Get-
ting Started page when you first launch
the Vivado IDE. Alternatively, you may
also go to the Tools Menu and select
the “Xilinx Tcl Store” menu option. This
will bring up the repository dialog box,
which will give you a list of apps avail-
able to install (Figure 1).
 As you browse the list of apps, with-
in each app there is a list of commands
(called “procs” in Tcl) that are available
for execution. You will see a description of
each app, and of each proc within the app,
to get an idea of what it does. Click on the
install button to install the app and register
it so that it now shows up like native Viva-
do Design Suite commands. Once an app
is installed, each time you start the Vivado

Design Suite it loads automatically—there
is no need to install the app each time you
start a new session.
 Procs have a naming convention
that uses a facility in Tcl called name-
spaces. The names of the commands
may seem a little more complex than
normal Tcl commands, and have “::”
characters embedded in them. For
example, xilinx::ultrafast::check_pll_
connectivity runs some connectivity
checks on the clock-modifying blocks
in Xilinx devices. The naming conven-
tions serve to make sure the Tcl code is
unique and that a proc in one app does
not conflict with another proc by the
same name in another app. Namespaces
are a standard feature of Tcl.
 To execute an app command, type in
the fully qualified name of the proc in-

in Vivado Design Suite commands,
right down to the help infrastructure.
Vivado Design Suite supports differ-
ent versions of apps using standard
package facilities of Tcl, so if a newer
version is released you can choose to
upgrade with a single mouse click.
 The Xilinx Tcl Store is intended to
make it easier to find and use well-craft-
ed Tcl scripts developed and supported by
the user community, in the same manner
as Linux development. Tcl scripting is a
little more advanced than selecting IDE
buttons. However, it is easy to learn. Docu-
mentation and user guides provide details
on specific commands from the Tcl API
and can be found on xilinx.com/support.
 Let’s take a closer look at the infra-
structure for installing and using Tcl
apps from the Xilinx Tcl Store.

Figure 1 – The Tcl Store dialog box in the Vivado IDE allows installation of apps and browsing of the commands.

http://www.xilinx.com/support

T O O L S O F X C E L L E N C E

 Second Quarter 2014 Xcell Journal 57

cluding the namespace, and optionally
pass in any required arguments, just like
other Tcl commands. Since the com-
mands are using standard namespaces,
you can also choose to import the com-
mands into the global namespace. The
strategy will work fine if there are no
conflicts between any other command
names. This will allow you to omit the
namespace qualifier and use the proc
name alone. In the example above, if
you imported the UltraFast app into the
global namespace, you could call the
check_pll_connectivity command di-
rectly without the namespace qualifers.
 Designers can uninstall apps with a
single click of the “Uninstall App” hy-
perlink within the details section of the
app. There is also a “Refresh” button to
update the catalog. The Tcl Store catalog
is hosted on a third-party website that
provides the ability to push out updates
to app revisions independently of Vivado
Design Suite releases. If the catalog is re-
freshed, the Vivado tools will perform a
lightweight synchronization of the list of
apps. If an updated version of an installed
app is available, use the “Update” button
to acquire it. The Vivado Design Suite
will copy and sync the latest version of
the app and install it. To avoid configu-
ration control issues, upgrades are only
installed at the designer’s request. For
those who are concerned about security
and would prefer to keep the Vivado De-
sign Suite from syncing outside of their
network firewall, there is a parameter to
disable the catalog synchronization.
 Usage of Tcl apps in the Xilinx Tcl Store
is meant to be easy and simple. Xilinx’s

Usage of Tcl apps in the Xilinx Tcl Store is
meant to be easy and simple. Xilinx’s goal is to
encourage use and sharing among development

teams around the world to improve productivity.
goal is to encourage use and sharing
among development teams around the
world to improve productivity. Only the
latest version of any given app is dis-
played and designers can only install or
upgrade to the latest supported version.
Of course, the best way to have good
usage is to ensure that there is a rich li-
brary of useful code. Xilinx has seeded
the repository with a collection of help-
ful utility and integration scripts that you
can peruse as good examples of how to
build your own reusable Tcl scripts.

CONTRIBUTING TO THE TCL STORE
There are two ways to contribute to the
Tcl Store and make your script available
to all Vivado Design Suite users. The first
is to modify an app that already exists.
The second is to develop and submit
a request for a new app. To contribute
code to the repository, you need to have
some level of comfort with software de-
velopment tools for revision control, or
at least a willingness to learn.
 Each app is controlled by a single
person, usually the person who au-
thored most of the code, referred to as
the “app owner.” The Xilinx repository
as a whole is controlled by Xilinx, and
the company maintains a process for re-
leasing the apps into the public domain
to enforce basic consistency across the
apps. Xilinx employees will perform a
“gatekeeper” role to ensure quality.
 The “contributor” who wishes to
modify an existing app or add a new one
will work with the gatekeeper and app
owner for the submission, consistent
with the process on other open-source

projects. A wiki on the site where the
code is hosted documents this process.
 Basic requirements will be enforced for
all code submissions. Xilinx has attempt-
ed to keep this list—which is subject to
change—as small as possible, while still
ensuring a reasonable user experience.
Here is the list of basic app requirements
you need to adhere to:

• Follow basic coding-style guidelines
by using procs with arguments that
do not use or access global variables.

• Include basic documentation inside the
proc that describes what it does, what
the arguments are and what it returns.

• Make sure code passes a basic syn-
tax check, and also passes a linting
tool that is provided as a part of the
Vivado Design Suite.

• Provide a minimum of one basic test
for each proc that ensures the code at
least runs and does what is expected.

THE TCL STORE ON GITHUB
The Xilinx Tcl Store is hosted on a
third-party website called GitHub.com.
The store uses revision-control tools
to ensure distributed development
happens in a controlled way. The key
to this process is Git, a popular open-
source, distributed revision-control
tool that is commonly used for Linux.
To access the repository for contribu-
tion and testing, you register for a free
account on GitHub.com, and install
and set up Git. GitHub provides an
installation of Git tools for Windows

T O O L S O F X C E L L E N C E

 58 Xcell Journal Second Quarter 2014

PCs. Linux machines typically already
have it or can install it through stan-
dard packages. GitHub provides tuto-
rials to help you get started with Git.
 Once you have a GitHub account,
here are the steps for contributing to
the Tcl Store repository:

1. Clone the Xilinx Tcl Store master
repository. This creates a local copy
that is your sandbox and it allows
you to develop locally and test with-
out impacting others.

2. Place your new code in the correct
directory, following the established
guidelines based on app name and
company or GitHub username. Use
standard Git add commands.

3. Use Vivado Design Suite in the local
repository, and call a few commands
that are necessary for registering the

code and generate a catalog.xml file.
This is one of three files that you will
need. The others are a package index
and a Tcl index.

4. Open Vivado Design Suite in an-
other location, point to the local
repository and test your apps. Run
the linter and your local tests un-
til you are comfortable that all is
working correctly.

5. Commit your changes and provide a
message briefly documenting them.

6. Send an e-mail requesting permission
to contribute to tclstore@xilinx.com.
Indicate whether you’d like to create
a new app and what you’d like to call
it. If you’d like to modify or contrib-
ute to an existing app, please indicate
that; you will need permission from
the app owner.

7. Go to GitHub.com using a Web
browser and issue a pull request.
This formally initiates the process
of merging your contributions into
the repository. Work with the gate-
keeper and app owner as appropri-
ate to resolve any issues through
GitHub and e-mail.

8. Congratulations! It feels good to help
your fellow designers.

Figure 2 shows a basic diagram of
the workflow showing the submis-
sion process.

THE FINE PRINT
The Xilinx Tcl Store is open source, and
there is no facility to monetize or charge
for contributions. Apps contributed to
the Tcl Store are made freely available for
derivative works through a BSD license
commonly used in open-source projects.

App Submission/Review Process

Contributor Gatekeeper

App Owner

Contributor Gatekeeper

App Owner

3. Send pull request
(needs permission to send)

1. Create/update/test app
2. Push to own master

7. Review/test
8. Merge/close pull request

4. Assign

5. Review/test

6. Approve/reject

Figure 2 – Workflow of the Xilinx Tcl Store submission process passes through several discrete steps.

T O O L S O F X C E L L E N C E

 Second Quarter 2014 Xcell Journal 59

Contributions to the repository will in-
clude a version of the BSD license with
each app in order for it to be accepted
and published publicly. If a company or
user does not wish to release their intel-
lectual property into the public domain,
Vivado Design Suite does support local
versions of the repository via the same
mechanism that is used for testing prior
to issuing a pull request.
 Furthermore, since the project uses
GitHub for hosting, submitters must
agree to the GitHub terms of service
when you register for an account, as
this is a third-party service.
 The apps in the app store are developed
and supported by the user community.
This means that Xilinx technical support
has not received training on this function-
ality and will not be able to answer ques-
tions about Tcl code. Please direct support
questions for these apps to the Xilinx user
forums. If a bug or issue exists in a piece
of code, you can file and track it directly
in GitHub.com projects. Since this is an
open-source development model, users
are encouraged to fix these issues and im-
prove the experience for the overall good
of other users—just like Linux.

ROAD MAP
The Vivado 2014.1 introduction of the
Tcl Store is just the beginning. Xilinx will
be improving the Tcl Store this year by
implementing the ability to search the
descriptions of the apps and procs to
make it easier to find functions. We will
be providing a way to browse and view
the source code without having to install
the app. In addition, we intend to pro-
vide a review mechanism where users
can specify a rating of one to five stars,
and optionally provide a written review.
This will give people feedback mecha-
nisms on the more popular submissions.
 We will also make use of better
categorization with filtering capability
based on the categories of apps, for ex-
ample simulation, synthesis, implemen-
tation, project and netlist utilities. As
the repository grows, we may institute
more groupings and extend the taxono-
my of apps to reflect the contributions.

We want to make it as easy as possi-
ble to contribute apps, so we may look
for ways to allow people to submit Tcl
scripts by e-mail with a minimal sup-
port burden and no need to go through
GitHub. The uncontrolled nature of such
a process would not be coupled with the
current installation scheme, and would
perhaps be best suited for examples.
 Thousands of designers around the
world are using the Vivado Design Suite
and hundreds of companies have adopt-
ed the UltraFast Design Methodology.
The Xilinx Tcl Store will continue to in-
crease designer productivity by provid-
ing a new open-source project between
Xilinx, its partners and our customers
aimed at sharing Tcl scripts.

 INFORMATION AND RESOURCES

To request GitHub account access
and to see tutorials on Git and
GitHub, go here:

https://github.com/

The Xilinx Tcl Store code reposito-
ry as well as a wiki that documents
how to contribute are located here:

https://github.com/Xilinx/Xilinx-
TclStore

The Xilinx Tcl Store wiki contains
detailed information concerning
the contribution process:

https://github.com/Xilinx/Xilinx-
TclStore/wiki/Xilinx-Tcl-Store-
Home

UG 894, the “Using Tcl Scripting
Guide,” contains information on the
general scripting capabilities of the
Vivado Design Suite:

http://www.xilinx.com/support/
documentation/sw_manuals/
xilinx2013_4/ug894-vivado-tcl-
scripting.pdf

UG 835, “Tcl Command Reference,”
contains information on all of the
native Tcl commands available in
Vivado Design Suite:

http://www.xilinx.com/support/
documentation/sw_manuals/xil-
inx2013_4/ug835-vivado-tcl-com-
mands.pdf

http://www.knowres.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_4/ug894-vivado-tcl-scripting.pdf
https://github.com/
https://github.com/Xilinx/XilinxTclStore
https://github.com/Xilinx/XilinxTclStore/wiki/Xilinx-Tcl-Store-Home
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_4/ug835-vivado-tcl-commands.pdf

 60 Xcell Journal Second Quarter 2014

What’s New in the
Vivado 2014.1 Release?
Xilinx is continually improving its products, IP and design tools as it strives to help designers
work more effectively. Here, we report on the most current updates to Xilinx design tools including
the Vivado® Design Suite, a revolutionary system- and IP-centric design environment built from
the ground up to accelerate the design of Xilinx® All Programmable devices. For more information
about the Vivado Design Suite, please visit www.xilinx.com/vivado.

Product updates offer significant enhancements and new features to the Xilinx design tools.
Keeping your installation up to date is an easy way to ensure the best results for your design.

The Vivado Design Suite 2014.1 is available from the Xilinx Download Center at www.xilinx.com/
download.

XILINX Tcl STORE

Xilinx is taking another large step for-
ward in designer productivity by hosting
an open-source repository for sharing
Tool Command Language (Tcl) code.
This repository, called the Xilinx Tcl
Store, will make it a lot easier to find and
share Tcl scripts that other engineers
have developed. With the power of Tcl,

these scripts can extend the consider-
able core functionality of the Vivado
Design Suite, enhancing productivity
and ease of use. The Tcl Store is open to
the user community to contribute to the
greater good of all designers by publish-
ing Tcl code that others might find useful.

The Xilinx Tcl Store provides exam-
ples of how to write custom reports,
control specific tool behavior, make

XTRA, XTRA

custom netlist changes and integrate
with third-party electronic design au-
tomation (EDA) tools such as simu-
lation, synthesis, timing and power
analysis, and linting tools. Natively ac-
cessed from the Vivado Integrated De-
sign Environment (IDE), the Tcl Store
enables users to select and install col-
lections of Tcl scripts called “apps”
directly from within the tool. Once
installed, these apps have commands
that appear just like built-in Vivado
Design Suite commands.

To learn more about the new Xilinx
Tcl Store, watch the QuickTake video at
http://www.xilinx.com/training/vivado/
introduction-to-the-xilinx-tcl-store.htm.

VIVADO DESIGN SUITE:
DESIGN EDITION UPDATES

Vivado Implementation Tools
Performance and run-time improvements:

• Average 25 percent faster overall
implementation run-time compared
to 2013.4

• Average 2.5 percent better Fmax on
7 Series SSIT devices

• Average 5 percent improvement in
Fmax across all devices.

VIVADO DESIGN SUITE 2014.1 RELEASE HIGHLIGHTS
Vivado Design Suite 2014.1 increases your productivity with faster run-times, im-
proved quality of results, automation of the UltraFast™ Design Methodology and
hardware acceleration of OpenCL kernels through Vivado high-level synthesis (HLS).

DEVICE SUPPORT

Production Ready:
• Artix®-7 XC7A35T and XC7A50T
• XA Artix-7 XA7A50T, XA7A35T and XA7A75T
• Zynq®-7000 XC7Z015

General Access:
Kintex® UltraScale:
• XC KU035, XC KU040, XC KU060 and XC KU075

Early Access (contact local sales rep):
Kintex UltraScale SSI devices:
• XC KU100 and XC KU115

Virtex® UltraScale devices:
• XC VU065, XC VU080, XC VU095, XC VU125, XC VU145 and XC VU160

http://www.xilinx.com/download
http://www.xilinx.com/training/vivado/introduction-to-the-xilinx-tcl-store.htm

 Second Quarter 2014 Xcell Journal 61

Integrated Design Environment
Timing Constraints Wizard: An automat-
ed tool that guides users to create timing
constraints for clocks, I/O and clock do-
main crossing constraints. Intelligence
built into the wizard queries the Vivado
Design Suite’s design database to extract
the clocking structure as well as existing
constraints, often coming from IP reuse,
then guides the user to correctly con-
strain the rest of the design.

To learn more about the new Timing
Constaints Wizard, watch the Quick-
Take video at http://www.xilinx.com/
training/vivado/using-the-vivado-tim-
ing-constraint-wizard.htm.

Vivado IP Integrator
• New “Signals” tab allows drag-and-

drop connection, visualization and
management of clock and reset
domains in a design.

• New automated “Board Interface”
tab allows quick connection to
interfaces available on supported
development boards.

• Designer Assistance now provides
an option for users to specify a
clock domain instead of assuming a
default domain.

Tandem Configuration
for Xilinx PCIe IP
• The Tandem Configuration IP core

has been included within the IP Inte-
grator. This core, which is specifically
the AXI streaming variant, can be add-
ed to a design within IPI.

• Support has been added for Zynq®-
7000 All Programmable SoC devices.

• For more information, see the PCI Ex-
press® IP Product Guides.

VIVADO DESIGN SUITE:
SYSTEM EDITION UPDATES

Vivado High-Level Synthesis
Vivado HLS now offers early-access
support of OpenCL kernels. OpenCL
provides a framework and language for
writing kernels that execute across het-

erogeneous platforms and can now be
seamlessly converted to IP running on
Xilinx All Programmable devices.

A new linear algebra library enables
rapid IP generation of C/C++ algorithms
that require functions such as Cholesky
decomposition, singular-value decom-
position (SVD), QR factorization and
matrix multiplication.

Smoother integration of HLS de-
signs into AXI4 systems occurs
through new data-packing options that
automate the alignment of data to 8-bit
boundaries. Enhanced functionality is
provided for AXI4 master interfaces as
the USER ports can now be optionally
included in the interface.

Improved resource usage is provided
for designs using division operations.
These operations now automatically
benefit from smaller implementations.

System Generator for DSP
System integration of System Generator
for DSP blocks is now faster and easier
with the AXI4-Lite slave interface and
corresponding software drivers for both
Linux and bare-metal designs. Verifica-
tion is improved thanks to the support
for non-memory-mapped interfaces in
hardware co-simulation.

Plug-and-Play IP Updates
Vivado 2014.1 provides increased quality
and features for UltraScale™ GT-based IP:

• GT Wizard queries the device model
at run-time for accurate physical
resources and location.

• All GT-based IP cores call the
GT Wizard at run-time

• Clocking and reset resources can be
easily shared between GT instances.

• All GT ports can be enabled for debug.

• There is no need to edit any IP file.

Additional new key IP available for Ul-
traScale devices in 2014.1 includes the
HSSIO Wizard, System Management
Wizard, SGMII over LVDS, Aurora 8B10B
and 64B66B, CPRI and Serial RapidIO.

ULTRAFAST DESIGN
METHODOLOGY

Second Edition of the UltraFast
Design Methodology
Xilinx has delivered the first comprehen-
sive design methodology in the program-
mable industry with its UltraFast technol-
ogy. Xilinx hand-picked the best practices
from experts and distilled them into this
authoritative set of methodology guide-
lines for the Vivado Design Suite.

Now in its second edition, the Ultra-
Fast Design Methodology Guide extends
support of the UltraScale architecture,
adds a new Timing Constraints Wizard
for rapid timing closure and includes
new best practices, such as:

• Design methodology DRCs
• Revision control
• IP / IP Integrator methodology
• Simulation (including third-party flows)
• Verification

• Vivado HLS

• Partial reconfiguration

TAKE THE NEXT STEP

Vivado QuickTake Tutorials
For more information, watch the What’s
New in Vivado Design Suite video at
http://www.xilinx.com/training/viva-
do/whats-new-in-vivado.htm.

Vivado Design Suite QuickTake vid-
eo tutorials are how-to videos that take
a look inside the features of the Vivado
Design Suite. New topics include: Design
Flow Overview, Using the Timing Con-
straints Wizard, Xilinx Tcl Store, Using
Vivado with Xilinx Evaluation Boards and
Packaging Custom IP for use with IP Inte-
grator. See all QuickTake videos at http://
www.xilinx.com/training/vivado.

Vivado Training
For instructor-led training on the Viva-
do Design Suite, please visit www.xil-
inx.com/training.

Download Vivado Design Suite 2014.1
today at http://www.xilinx.com/down-
load.

http://www.xilinx.com/download.
http://www.xilinx.com/training
http://www.xilinx.com/training/vivado/using-the-vivado-timing-constraint-wizard.htm
http://www.xilinx.com/training/vivado/whats-new-in-vivado.htm

 62 Xcell Journal Second Quarter 2014

Latest and Greatest
from the Xilinx Alliance
Program Partners

T
he Xilinx® Alliance Program is a worldwide eco-
system of qualified companies that collaborate
with Xilinx to further the development of All Pro-
grammable technologies. Xilinx has built this eco-

system, which leverages open platforms and standards,
to meet customer needs and is committed to its long-term
success. Alliance members—including IP providers, EDA
vendors, embedded software providers, system integra-
tors and hardware suppliers—help accelerate your de-
sign productivity while minimizing risk. Here are some
highlights of recent alliance activities.

XPEDITE

XYLON AND NORTHWEST
LOGIC DELIVER MIPI CSI-2
CAMERA INTERFACE DEMO
AT NAB 2014

https://www.youtube.com/
watch?v=aKbkB7WN8CE

The MIPI Display Serial Interface (DSI)
and Camera Serial Interface 2 (CSI-2)
are becoming key, low-cost industry
standards for connecting video displays
and cameras to a wide variety of em-
bedded systems. You can now leverage
a MIPI-compatible interface implement-
ed on the Xilinx platform. This low-cost
way to interface multiple cameras and
displays greatly enhances the use of
Xilinx All Programmable devices at the
heart of diverse Smarter Vision systems
for all sorts of markets including auto-
motive, industrial and medical. In early

Xpedite highlights the latest technology updates
from the Xilinx Alliance partner ecosystem.

April at the NAB 2014 show in Las Ve-
gas, visitors to the Xilinx booth saw the
demo system based on a Xilinx ZC706
Zynq SoC Evaluation Kit developed
by Premier Xilinx Alliance Program
members Xylon and Northwest Logic.
Please click on the link above to view a
short video explaining the demo.

BARCO-SILEX
DEMONSTRATES 4K
VIDEO-OVER-IP WITH
JPEG2000 ON A SINGLE
KINTEX-7 AT NAB 2014

http://www.barco-silex.com/ip-cores/
jpeg-2000

Barco-Silex upgraded to 4K its well-
known video-over-Internet Protocol
(VoIP) reference design that integrates

JPEG2000 compression and Transport
Stream solutions with Xilinx SMPTE
2022 cores on a single Kintex®-7 device.
Fully compliant with the Video Services
Forum (VSF) technical recommenda-
tion, this design ensures interopera-
bility with major broadcast industry
players as it was demonstrated at the
VidTrans 2014 meeting in Arlington,
Va., in February and again at NAB 2014
in April. This new version of the refer-
ence design combines JPEG2000 com-
pression and flexible MPEG2-TS cores
from Barco-Silex with the SMPTE2022
1-2 IP core from Xilinx on a Kintex-7
FPGA to carry a 4K video stream over
a 1G network. The 4K video is captured
via Quad-SDI, and is encoded by the
high-quality Barco-Silex JPEG2000 en-
coder core. The integrated Barco-Silex
Transport Stream solution combined
with the Xilinx SMPTE2022 1-2 core
provides interoperability thanks to its
proven compliance with the VSF techni-
cal recommendations.

TOPIC SHOWCASES DYPLO
SYSTEM AT EMBEDDED
WORLD 2014
https://www.youtube.com/watch?v=8S-
1GOcL-t4o

Premier Alliance member TOPIC Embed-
ded Products has developed an operating
system that will significantly reduce the

https://www.youtube.com/watch?v=aKbkB7WN8CE
http://www.barco-silex.com/ip-cores/jpeg-2000
https://www.youtube.com/watch?v=8S1GOcL-t4o

Second Quarter 2014 Xcell Journal 63

development time and cost of creating
products based on FPGA-and-processor
combinations, such as the Xilinx Zynq®-
7000 All Programmable SoC. The Dyplo
system’s OS bridges the gap between
hardware and software design, and
provides a means to enable a fully soft-
ware-driven development flow. Dyplo
extensively uses partial reconfigura-
tion, an advanced design technique in
which the FPGA fabric can (partially
and selectively) change its hardware
configuration on the fly. Partial recon-
figuration makes it possible to execute
different functions by reusing the same
FPGA fabric over time. Dyplo manag-
es the reconfigurable blocks such that
functions can be executed as desired,
either in software or in hardware, de-
pending on the execution context con-
straints, such as power consumption,
performance and footprint. The link
above will bring you to a short video
explaining the demo.

DAVE EMBEDDED SYSTEMS
FEATURES BORA SOM AT
EMBEDDED WORLD 2014

http://www.xilinx.com/alliance/mem-
berlocator/1-33H1QG.htm

The Italian company DAVE Srl show-
cased BORA, a system-on-module (SoM)
equipped with Xilinx Zynq XC7Z010 and
XC7Z020 devices, at Embedded World
2014 in Nuremburg, Germany, in Feb-
ruary. The key benefits for customers
are the shortened development time,
lower costs and reduced engineering
resources that come with using a com-
pact and integrated one-chip solution
that includes both a CPU (the onboard
ARM® Cortex™-A9 processor) and an
FPGA. Customers also avoid manufac-
turing complexities with DAVE’s SoM
solution. Additionally, BORA has both
Linux and a real-time operating system
(RTOS) running simultaneously on the
same SoC. See this application note for
more details: http://www.dave.eu/
sites/default/files/files/an-belk-001-
amp-li-nux-freertos.pdf.

INTERFACE CONCEPT’S
MTCA.4 VIRTEX-7 AMC
MODULE SELECTED BY
SLAC FOR ACCELERATOR
DIAGNOSTICS

http://www.gomaelettronica.it/en.html

Diagnostics and beam control in
high-energy physics require ever
higher signal-processing power. The
high-energy physics community has
defined a new MTCA.4 standard that
specifies extensions to MicroTCA
to support uRTM applications. The
SLAC National Accelerator Laborato-
ry in Menlo Park, Calif., has selected a
module from Alliance Program mem-
ber Interface Concept for assisting
in the diagnostics of high-speed par-
ticles. In partnership with Deutsches
Elektronen-Synchrotron (DESY), In-
terface Concept has developed a new
Virtex®-7 MTCA.4 and a four-channel,
1,300-Msps 12-bit resolution ADC
FPGA mezzanine card (FMC) with a
sophisticated clock system that al-
lows for synchronization (up to eight
channels using two FMCs).

The MTCA.4 carrier features a Vir-
tex-7 VX690T (Speed Grade -2) with
3.25 Gbytes of DDR3 memory running
at 1,600 MT/s (spread on two banks)
and a QSPI flash. Each HPC FMC inter-
face, compliant with VITA 57, provides
eight GTH transceivers and 80 LVDS
lanes. The fabric links are composed of
16 GTH transceivers and the uRTM in-
terface provides four GTH transceivers
and 38 LVDS lanes. Onboard memories
allow you to store up to three selectable
FPGA images. A module Management
Controller Unit carries out the onboard
power and temperature monitoring,
Virtex-7 configuration and IPMI inter-
face (MMC v1.0 compliant). Addition-
ally, Interface Concept provides VHDL
code for system services and reference
designs such as PCIe DMA engines, sig-
nal capture and processing. Example
code is available for each FPGA inter-
face, facilitating design and integration
for customers.

GetPublished

Would you like
to be published

in Xcell
Publications?

It's easier than you think!

Submit an article draft for our Web-based

or printed Xcell Publications and we will

assign an editor and a graphic artist

to work with you to make your work

look as good as possible.

For more information on this

exciting and highly rewarding program,

please contact:

Mike Santarini

Publisher, Xcell Publications

xcell@xilinx.com

http://www.xilinx.com/alliance/memberlocator/1-33H1QG.htm
http://www.xilinx.com/xcell
http://www.dave.eu/sites/default/files/files/an-belk-001-amp-linux-freertos.pdf

 64 Xcell Journal Second Quarter 2014

Application Notes
If you want to do a bit more reading about how our
FPGAs lend themselves to a broad number of applications,
we recommend these application notes.

XAPP1177: DESIGNING WITH SR-IOV CAPABILITY
OF XILINX VIRTEX-7 PCI EXPRESS GEN3
INTEGRATED BLOCK
http://www.xilinx.com/support/documentation/applica-
tion_notes/xapp1177-pcie-gen3-sriov.pdf

Evaluating single-root I/O virtualization (SR-IOV) capabil-
ity can be a complex process, with many variations seen
among different operating systems and system platforms.
In demonstrating the SR-IOV capability of the Xilinx®
Virtex®-7 FPGA PCI Express® Gen3 integrated block, this
application note establishes a baseline system configura-
tion and provides the necessary software to quickly bring
up and evaluate the SR-IOV features of the Virtex-7 FPGA
PCIe® Gen3 integrated block.
 Author Vivek Surabhi explains the key concepts of SR-
IOV and details how to configure the SR-IOV capability.
The document shows how to create a PCI Express x8 Gen3
endpoint design configured for two physical functions and
six virtual functions. The reference design, which targets
a Virtex-7 FPGA VC709 Connectivity Kit, has been hard-
ware-validated on a system with SR-IOV capability.

XAPP1171: PCI EXPRESS ENDPOINT-DMA
INITIATOR SUBSYSTEM
http://www.xilinx.com/support/documentation/applica-
tion_notes/xapp1171-pcie-central-dma-subsystem.pdf

This application note by Brian Martin demonstrates a
Vivado® Design Suite subsystem for endpoint-initiated
direct memory access (DMA) data transfers through PCI
Express. The provided subsystems target the Zynq®-7000
All Programmable SoC ZC706 and Kintex®-7 KC705 de-
vice to initiate data transfers between DDR3 memory and
an externally connected PCI Express Root Complex. You
could modify the subsystem for use in other devices or
applications that require data transactions to be initiated
from within the FPGA logic.

 The application note demonstrates several key features
of the Vivado Design Suite and the IP cores used in the
design, starting with generating a block diagram subsys-
tem using Vivado’s Tcl commands and scripting. Other
areas covered include PCI Express endpoint configura-
tion; DMA-initiated data transfers over PCI Express; and
achieving high throughput into the Zynq SoC processing
system through the high-performance AXI interface. The
author also explores dynamic address translation be-
tween a 64-bit root complex (host) address space and a
32-bit FPGA (AXI) address space, and outlines a meth-
odology to perform DMA scatter-gather operations using
dynamic address translation.

XAPP1180: REFERENCE SYSTEM:
KINTEX-7 MICROBLAZE SYSTEM
SIMULATION USING IP INTEGRATOR
http://www.xilinx.com/support/documentation/applica-
tion_notes/xapp1180.pdf

This application note and reference system demonstrate
the functionality of a MicroBlaze™ processor system
on the Kintex-7 device architecture using the Xilinx IP
Integrator tool in simulation and in hardware. The sys-
tem includes common peripherals such as main memory
as well as RS232 communications. Author James Luce-
ro provides several standalone software applications to
verify the functionality of the peripherals. Applications
include hello_uart and hello_mem.
 Lucero also explains how to set up the simulation en-
vironment for the system, execute the simulation using
either the Vivado simulator or Mentor Graphics’ Model-
Sim® environments, and run the design on hardware. The
document describes running the design in simulation and
hardware, targeting the KC705 board that contains the
Kintex-7 XC7K410TFFG900-2 FPGA.

XAMPLES.. .

http://www.xilinx.com/support/documentation/application_notes/xapp1177-pcie-gen3-sriov.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1171-pcie-central-dma-subsystem.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1180.pdf

 Second Quarter 2014 Xcell Journal 65

XAPP1158: USING VXWORKS
BSP WITH ZYNQ-7000
http://www.xilinx.com/support/documentation/applica-
tion_notes/xapp1158-zynq-7000-vxworks-bsp.pdf

Here is a startup guide for new users of VxWorks, the real-time
operating system (RTOS) from Wind River, on the Zynq-7000 All
Programmable SoC. Authors Uwe Gertheinrich, Simon George
and Kester Aernoudt provide step-by-step instructions for run-
ning the VxWorks 6.9.3.1 board support package (BSP) on the
Zynq SoC, and additionally provide an overview of the boot
process. The application note starts by explaining the import-
ant elements of the Zynq SoC software environment to provide
a better understanding of BSP and application generation. The
authors explain the Zynq SoC processor subsystem boot pro-
cess and describe how to add VxWorks, including building and
debugging the application as well as remotely running a custom
application of VxWorks on the Zynq SoC.

XAPP742: AXI VDMA REFERENCE DESIGN
http://www.xilinx.com/support/documentation/applica-
tion_notes/xapp742-axi-vdma-reference-design.pdf

If you’ve ever contemplated building a video system using
Xilinx native video IP cores to process configurable frame
rates and resolutions in Kintex-7 FPGAs, this application
note will show you how. The reference design focuses on
run-time configuration of an onboard clock generator for a
video pixel clock, and on using video IP cores such as AXI
Video Direct Memory Access (VDMA), Video Timing Con-
troller (VTC), test pattern generator (TPG) and the DDR3
memory controller for running selected combinations of
video resolution and frame rate. Authors Pankaj Kumbhare
and Vamsi Krishna discuss the configuration of each video
IP in detail, helping designers make effective use of these
cores. Each video IP block is configured dynamically to pro-
cess various combinations of frame rate and resolution.

XAPP1200: KINTEX-7 FPGA TRANSCEIVER
WIZARD EXAMPLE DESIGN
http://www.xilinx.com/support/documentation/applica-
tion_notes/xapp1200-k7-xcvr-wiz-example-design.pdf

The KC705 Evaluation Kit provides a comprehensive,
high-performance development and demonstration plat-
form using the Kintex-7 FPGA family for high-bandwidth
and high-performance applications in multiple market seg-
ments. This application note by Dinesh Kumar and Thupalli
Ramachandra uses the KC705 kit and the GTX Transceiver
Wizard to demonstrate a transceiver example design run-
ning on Kintex-7 FPGA hardware. The authors have fully
verified the reference design and tested it on hardware.

XAPP1202: SYSTEM TRAFFIC GENERATION AND
PERFORMANCE MEASUREMENT
http://www.xilinx.com/support/documentation/applica-
tion_notes/xapp1202-sys-tg-pm.pdf

In this application note, authors Kondalarao Polisetti and
Pankaj Kumbhare demonstrate AXI4 system traffic genera-
tion and performance measurement using two Xilinx cores:
the AXI Traffic Generator (ATG) and the AXI Performance
Monitor (APM). The accompanying reference design focus-
es on run-time configuration for different instances of ATG
and APM, and shows how to configure and program these IP
cores to get the system performance metrics. The reference
design also shows the run-time system throughput and la-
tency of the system for different configurations using a Web
server application. The authors used the Vivado Design Suite
2013.4 to successfully place and route the interface at 100
MHz on the main AXI4 interfaces to the memory controller.

XAPP1199: SMPTE 2022-5/6 HIGH-BIT-RATE MEDIA
TRANSPORT OVER IP NETWORKS WITH FORWARD
ERROR CORRECTION
http://www.xilinx.com/support/documentation/applica-
tion_notes/xapp1199-smpte2022-56-over-ip.pdf

Here’s a video-over-IP network system that leverages the
performance features of the LogiCORE™ IP SMPTE 2022-5/6
video-over-IP transmitter and receiver cores. The reference
design by authors Gilbert Magnaye, Josh Poh, Myo Tun Aung
and Tom Sun focuses on high-bit-rate, native media transport
over 10-Gbps Ethernet with a built-in forward error correc-
tion (FEC) engine. The design is able to support up to three
SD/HD/3G-SDI streams.
 The transmitter platform uses three SMPTE SDI cores
to receive the incoming SDI video streams. The received
SDI streams are multiplexed and encapsulated into fixed-
size datagram packets by the SMPTE 2022-5/6 video-over-
IP transmitter core and sent using the 10-Gigabit Ethernet
MAC core. The 10-Gbit link is supported by a 10-Gigabit
Ethernet PCS/PMA core using an optical cable connected
to the receiver end. On the receiver platform, the 10-Giga-
bit Ethernet MAC collects the Ethernet datagram packets.
The SMPTE 2022-5/6 video-over-IP receiver core filters the
datagram packets, and de-encapsulates and demultiplexes
the datagrams into individual streams, then outputs those
streams through the SMPTE SDI cores. The Ethernet da-
tagram packets are buffered in DDR3 SDRAM for both the
transmitter and receiver.
 The DDR traffic passes through the AXI4 interconnect to
the 7 series AXI memory controller. A MicroBlaze processor
initializes the cores and reads the status. The reference design
targets the Xilinx Kintex-7 FPGA KC705 Evaluation Kit.

http://www.xilinx.com/support/documentation/application_notes/xapp1158-zynq-7000-vxworks-bsp.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp742-axi-vdma-reference-design.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1200-k7-xcvr-wiz-example-design.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1202-sys-tg-pm.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1199-smpte2022-56-over-ip.pdf

Xpress Yourself
in Our Caption Contest

Spring is in the air, even if your garden grows indoors. Xercise your
funny bone as you tend your posies by submitting an engineering-
or technology-related caption for this cartoon showing a couple of

engineers watering their plants. The image might inspire a caption like
“Once they cut static power and dynamic power in their design, Ernie and
Frank decided to experiment with Flower Power.”

Send your entries to xcell@xilinx.com. Include your name, job title, compa-
ny affiliation and location, and indicate that you have read the contest rules at
www.xilinx.com/xcellcontest. After due deliberation, we will print the submis-
sions we like the best in the next issue of Xcell Journal. The winner will receive
a Digilent Zynq Zybo board, featuring the Xilinx® Zynq®-7000 All Programma-
ble SoC (http://www.xilinx.com/products/boards-and-kits/1-4AZFTE.htm).
Two runners-up will gain notoriety, fame and a cool, Xilinx-branded gift from
our swag closet.

The contest begins at 12:01 a.m. Pacific Time on April 16, 2014. All entries
must be received by the sponsor by 5 p.m. PT on June 30, 2014.

So, put down your trowel and get writing!

NO PURCHASE NECESSARY. You must be 18 or older and a resident of the fifty United States, the District of Columbia, or Canada (excluding Quebec) to enter. Entries must be entirely original. Contest begins on
April 16, 2014. Entries must be received by 5:00 pm Pacific Time (PT) on June 30, 2014. Official rules are available online at www.xilinx.com/xcellcontest. Sponsored by Xilinx, Inc. 2100 Logic Drive, San Jose, CA 95124.

PAUL McFARTHING, development
engineer at Smith & Nephew

(Andover, Mass.), won a shiny new
Digilent Zynq Zybo board with this
caption for the tattooed engineer

in Issue 86 of Xcell Journal:

“I told you we didn’t have to worry
about the skin effect.”

Congratulations as well to
our two runners-up:

“Wearable computing is so passé.
This is the real future of
embedded computing.”

 — Chris Lee, technical leader,

Cisco Systems (San Jose, Calif.)

“Looks great, huh? Only three

ECOs, too. New personal record.”

— David Riley, principal hardware
engineer, Mantaro Networks

(Philadelphia)

XCLAMATIONS!
D

A
N

IE
L

G
U

ID
ER

A

 66 Xcell Journal Second Quarter 2014

mailto:xcell@xilinx.com
www.xilinx.com/xcellcontest
http://www.xilinx.com/products/boards-and-kits/1-4AZFTE.htm
www.xilinx.com/xcellcontest

http://www.synopsys.com/fpgaqualityofresults

http://www.xilinx.com/ultrafast

