
Presented By

David Dye

Senior Product Marketing Manager

10 December 2018

Designing for Acceleration:

Methodologies for Creating

Reconfigurable Applications

Topics

˃ Partial Reconfiguration Technology Review

˃ SDAccel and Dynamic Platforms

˃ Future Enhancements

Partial Reconfiguration

Silicon and Software Technology

Partial Reconfiguration is mainstream

˃ In production since 2010

Starting with Virtex-4, through UltraScale+

Continuous silicon improvements with each generation

Major advancement with the introduction of Vivado

˃ System Flexibility

Swap functions on the fly

Enables hardware acceleration platforms

Perform remote updates while system is operational

˃ Cost and Size Reduction

Time-multiplexing hardware requires a smaller FPGA

Reduces board space

Minimizes bitstream storage

Reconfigurable granularity in UltraScale/+

˃ Reconfiguration tiles for core fabric

based on shared interconnect

Base regions combined two columns of
resources with single INT

Bitstream granularity is larger, matching
clock region height

˃ IO and special elements have coarser rules,

shared with column of CLBs

IO and clocks: 1 bank

Transceivers: 1 quad

PCIe, CMAC, Interlaken: 1 clock region

CLB–CLBCLB–DSPCLB–BRAM

60 CLB Tiles

60 Interconnect Tiles
52 IOB

PLL 1

PLL 2

MMCM

BUFG

XiPhy

Dedicated silicon features provide design safety

˃ Dedicated initialization for reconfigured regions

Reconfigured region is masked and receives GSR for all
synchronous elements in partial bitstream

Behaves just like the initial configuration of the device

˃ Encryption and Compression natively supported

Authentication is also supported for Zynq SoCs

˃ CRC checking for partial bitstreams

Standard single CRC at the end of a partial bitstream can report errors

Per-frame CRC feature injects CRC checks at intervals in partial bitstream

‒ Failures are found and reported before bad frames are loaded into the device

Glitchless transitions and routing flexibility

˃ Static routes pass through

reconfigurable regions without disruption
Routing structure and global controls designed
for glitchless static operation

˃ Expanded routing regions provide

solution flexibility

Alleviates congestion near corners and edges

Capable Vivado toolset for compilation

˃ Major software overhaul for PR completed in 2013

PR included in all paid editions and kits since 2017

˃ Technology improvements for

performance and efficiency

Example: Partition Pins

‒ No overhead between static and dynamic logic

‒ Vivado optimized location and distribution

˃ Partial Reconfiguration IP helps users easily build up designs

Partial bitstream delivery management

AXI transitional behavior

Logical isolation

Version compatibility

SDIO FLASH etc.

Fetch

Bitstream

Configuration Port

Management

ICAP

DDR

PR ControllerSW

Triggers

HW

Triggers Partition Manager

Evolution of SDAccel

Acceleration Platforms

SDAccel software development environment

C/C++
Xilinx Runtime API / OpenCL API

xocc

Kernel

RTL

PCIe

Source code

Runtime

Platform

Host Code

Pre-existing Platform

GCC

Shell

x86 Shell
FPGA

Emulation

Debug

C/C++

Executable

Application Development

Optimization / Debug

Execution with pre-existing shell

(shell wraps around developer design and establishes

a thin communication layer for the drivers)

Board Deployment

(on the cloud or on premises)Kernels

xclbin

OpenCL

Xilinx Runtime

Drivers

OpenCL

What is a platform?

˃ A platform is the hardware design which

operates on an accelerator board’s FPGA

to enable integration of the board and

host computer with the user’s

accelerator (kernel) logic
Think “Device Support Archive”, not just its “shell”

˃ Examples of platform content:
Persistent PCI Express link to the host computer

DMA controller and interconnect for fast memory access

Memory controllers for DDR4 SDRAM global memory

Security and board management features

A Partial Reconfiguration-enabled design and floorplan

˃ In most acceleration platforms, a small static region (shell) provides this core

functionality while a large reconfigurable region is available for user kernels
The platform also implements the bridging between the two regions

Block diagram of a prototypical platform

In static logic, basic

infrastructure to

connect to the host

machine

PCI Express link

remains up during

partial reconfiguration

of kernels

DMA controller and

memory-mapped

interconnect for fast

data path & global

memory access

DDR memory

controller(s) for

high-capacity

global memory

A reconfigurable

partition which can

be reprogrammed

without disrupting the

static logic

Large logical region for

kernels – the user’s

accelerator logic

Where it started
Virtex-7 690T platform with Partial Reconfiguration

˃ Natural static/PR partitioning and simple device floorplan

˃ Relatively large rectangular dynamic region

˃ Single memory controller in the shell

˃ A good starting point, but not much bandwidth

The first UltraScale platform
Kintex UltraScale KU060 platform with Partial Reconfiguration

˃ Second memory controller and DDR4 for more bandwidth

˃ But awkward memory controller locations

˃ Shell is relatively large for the device

Larger SSI device, same shell
Kintex UltraScale KU115 platform with Partial Reconfiguration

˃ Almost the same platform as the KU060 variant, on larger device

˃ Second SLR offered >2x the available area for kernels

˃ But unmanaged SLR crossings proved problematic

˃ Still 2 DDR4 channels, despite enough HPIO banks for 4 channels

A new kind of platform
Kintex UltraScale KU115 platform with Expanded PR

˃ First Xilinx-built board for SDAccel

˃ Four DDR4 memory controllers for 2x bandwidth

˃ … but no good floorplan with the standard platform approach

˃ Adopted a new approach: Expanded Partial Reconfiguration
Static shell is much smaller

Distributed interconnect better manages SLR crossings

Dynamic region for kernels now a subset of the reconfigurable module

Pushing the limits
Virtex UltraScale+ VU9P platform with Expanded PR

˃ Same approach as in KU115-based expanded PR platform

˃ Now with 3 SLRs and more interconnect logic

˃ But several inefficiencies becoming more prominent
Just too much static logic for simple use cases

Automatic placement of kernels sometimes inconsistent with manually-placed platform infrastructure

Still no variability of platform contents … DIMMs?, debug IP?, etc.

The reality

˃ VU9P platform with Expanded Partial Reconfiguration is a powerful, full-featured platform

˃ And maybe it is perfect for the user
Exactly the right number of DDR4 memory channels vs. free fabric resources

Just the right performance tuning

Works perfectly with user kernels (no debug necessary)

Performance profiling taps are in the right places

Ideal logic placement for kernels relative to platform interconnect

˃ But if not…
For a different number of DDR4 channels: new platform

For different performance tuning / memory parameters: new platform

Any issues requiring debug IP inserted at the problematic location: new platform

Modified performance profiling tap points: new platform

Different interconnect topology or for required kernel placement: new platform

A better way

˃ Platform logic in the reconfigurable module was fixed for every kernel build…

A better way

˃ Platform logic in the reconfigurable module was fixed for every kernel build…

˃ …leading to wasted FPGA area, power, and Vivado runtime when unused

A better way

˃ Platform logic in the reconfigurable module was fixed for every kernel build…

˃ …leading to wasted FPGA area, power, and Vivado runtime when unused

˃ But if the entire dynamic region – not just the user kernels – could be modified by SDx…

A better way

˃ Platform logic in the reconfigurable module was fixed for every kernel build…

˃ …leading to wasted FPGA area, power, and Vivado runtime when unused

˃ But if the entire dynamic region – not just the user kernels – could be modified by SDx…

˃ …then the platform infrastructure could best suit the kernels for every build, automatically

A better way

˃ Platform logic in the reconfigurable module was fixed for every kernel build…

˃ …leading to wasted FPGA area, power, and Vivado runtime when unused

˃ But if the entire dynamic region – not just the user kernels – could be modified by SDx…

˃ …then the platform infrastructure could best suit the kernels for every build, automatically

˃ And we’d have the framework for SDx to dynamically build up just what the user needs

– Dynamic Platforms

Protocol

Checker

Memory subsystem Hierarchical IP

˃ Encapsulate and abstract DDR-based memory

resources and associated data-interconnect

instances

Data-driven dynamic generation of interconnect and
MIG instances based on application use

˃ Simplify dynamic region design

Single IP instance versus hand constructed network of
SmartConnect and MIG instances

˃ Simplify linking of kernels

Resource based model of platform memory

Resource-Connection API hides IP-specific details of
attaching Kernel’s AXI interface to memory subsystem

Host Kernel Kernel

DDR DDRDDR

SmartConnect

Network

Passthrough

MI

Board-driven DDR resources

˃ What DDR resources are available in the

platform?

Avoid manual configuration specified by each
DSA developer

˃ Board infrastructure provides a better

experience for DSA developer

Xilinx standard approach for board modeling

Board components document which DDR memory
resources are available

Board infrastructure presets can be embedded in
the board definition to provide a working
configuration for the memory controller IPs

Board

Definition.

xml

Memory mapping and dynamic system topology

˃ AXI Interfaces advertise the set of available DDR memory resources within the

memory subsystem to IPI’s address editor

Dynamic region memory controllers not actually instantiated at this point

Only create memory controllers for the memory resources that actually get mapped into
Kernel’s address space

Only build what you need

1 DDR 2 DDRs 3 DDRs 4 DDRs

Future Enhancements for

Partial Reconfiguration and

Platform Design

SLR automation

˃ FaaS platforms commonly use SLR-based devices

Sometimes a kernel doesn’t reside in the same SLR as the memory bank(s) it accesses

˃ Memory Subsystem automates SLR crossings and IPI SLR automation provides a simple

way for the user to allocate kernels to SLR

Memory Subsystem samples IPI’s SLR annotations to determine how to apply SLR crossing resources

SDx ‘software developer’ can avoid low level details of XDC placement constraints and
microarchitectural options for SLR timing pipes

Dynamic Shell

˃ Support multiple platforms on a single shell

˃ Example

Locked static design

Dynamic shell with specific features (e.g. DMA)

Multiple workloads for this shell

˃ New shell features loaded without changing static

New dynamic shells can have:

‒ Different sizes and floorplans

‒ Different features

‒ Different interfaces to workload space

‒ Optimized for user application

Workloads must be compatible with a specific dynamic shell

‒ Bitstream manager must keep track of current state

Workload 1

for DS #1

Workload 2

for DS #1
Grey BoxWorkload 1

for DS #2

Workload 2

for DS #2

Dynamic

Shell #1

Dynamic

Shell #2 S
ta

ti
c

RCLK

NoC

N
P

I

NoC

PS + PMC

H
D

IO

DDRIO (84)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

C
F

R
A

M
E

C
F

R
A

M
E

RCLKRCLKRCLK RCLK

GTY (4)

GTY (4)

RCLKRCLK RCLK

RCLKRCLK RCLK

C
F

R
A

M
E

C
F

R
A

M
E

NPI

NPI

N
P

I

N
PI

M
R

M
A

C
P

C
IE

-B

N
o

C

GTY (4)

XPIO
(DDRMC)

XPIO
(DDRMC)

H
D

IO

RCLK

RCLKRCLK RCLK

X
P

IP
E

CPM
(PCIE-CCIX)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

M
E

(7
)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

M
E

(7
)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

M
E

(7
)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

N
o

C

Kernel 3

Kernel 2Kernel 1

RCLK

NoC

N
P

I

NoC

PS + PMC

H
D

IO

DDRIO (84)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

C
F

R
A

M
E

C
F

R
A

M
E

RCLKRCLKRCLK RCLK

GTY (4)

GTY (4)

RCLKRCLK RCLK

RCLKRCLK RCLK

C
F

R
A

M
E

C
F

R
A

M
E

NPI

NPI

N
P

I

N
PI

M
R

M
A

C
P

C
IE

-B

N
o

C

GTY (4)

XPIO
(DDRMC)

XPIO
(DDRMC)

H
D

IO

RCLK

RCLKRCLK RCLK

X
P

IP
E

CPM
(PCIE-CCIX)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

M
E

(7
)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

M
E

(7
)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

M
E

(7
)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

N
o

C

Kernel 3

Kernel 2Kernel 1

RCLK

NoC

N
P

I

NoC

PS + PMC

H
D

IO

DDRIO (84)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

C
F

R
A

M
E

C
F

R
A

M
E

RCLKRCLKRCLK RCLK

GTY (4)

GTY (4)

RCLKRCLK RCLK

RCLKRCLK RCLK

C
F

R
A

M
E

C
F

R
A

M
E

NPI

NPI

N
P

I

N
PI

M
R

M
A

C
P

C
IE

-B

N
o

C

GTY (4)

XPIO
(DDRMC)

XPIO
(DDRMC)

H
D

IO

RCLK

RCLKRCLK RCLK

X
P

IP
E

CPM
(PCIE-CCIX)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

M
E

(7
)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

M
E

(7
)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

M
E

(7
)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

N
o

C

The next generation: ACAP

˃ Hardened Memory Controllers + DDRIO

Allows DDR memory controllers to remain active
while fabric is reconfigured

Moving DDRIO out of fabric improves ease of PR
floorplanning

˃ Hardened PCIe + DMA

PCIe interface can be brought into operation with
minimal programming

˃ NoC Ports in Fabric

High bandwidth datapath to PMC for PR

˃ Configuration Performance Increase

Max bandwidth 8X faster than Zynq US+ MPSoC
(6.4GByte/sec)*

Capable of reconfiguring 1M logic cells in under 8ms

RCLK

NoC

N
P

I

NoC

PS + PMC

H
D

IO

DDRIO (84)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

GTY (4)

C
F

R
A

M
E

C
F

R
A

M
E

RCLKRCLKRCLK RCLK

GTY (4)

GTY (4)

RCLKRCLK RCLK

RCLKRCLK RCLK

C
F

R
A

M
E

C
F

R
A

M
E

NPI

NPI

N
P

I

N
PI

M
R

M
A

C
P

C
IE

-B

N
o

C

GTY (4)

XPIO
(DDRMC)

XPIO
(DDRMC)

H
D

IO

RCLK

RCLKRCLK RCLK

X
P

IP
E

CPM
(PCIE-CCIX)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

M
E

(7
)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

M
E

(7
)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

M
E

(7
)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

 (
7

)

M
E

(7
)

M
E

(7
)

N
o

C

Kernel 3

Fabric
NoC

Port 3

Kernel 2Kernel 1

Fabric
NoC

Port 1

Fabric
NoC

Port 2

* When using an external interface such as PCIe, DDR memory, etc.

Summary

Robust Silicon Technology

Evolution of Platform Development

Exciting Future Ahead

˃ Decades of investment coupled with extensive validation of dynamic configuration solutions

˃ Steadily increasing optimization for dynamic acceleration

˃ Enhanced flexibility for the most efficient use of silicon

