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FPGA Acceleration : Boosting Application Performance

func1 func2 func3 func4CPU

FPGA handles compute-intensive, deeply pipelined, 

massively parallel operations. CPU handles the rest 

func2

func1 func3 func4CPU

FPGA

With FPGA acceleration

Without acceleration
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Customizable Architectures – The FPGA Advantage

FPGAs

˃ Flexible, fully customizable architecture

˃ Developer adapts the architecture to the program

CPUs and GPUs

˃ Fixed instruction set and rigid memory hierarchy

˃ Developer adapts the program to the architecture
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FPGAs – The Ultimate Parallel Processing Device

˃ No predefined instruction set or underlying architecture

˃ Developer customizes the architecture to his needs
Custom datapaths

Custom bit-width

Custom memory hierarchies

˃ Excels at all types of parallelism
Deeply pipelined (e.g. Video codecs)

Bit manipulations (e.g. AES, SHA)

Wide datapath (e.g. DNN)

Custom memory hierarchy (e.g: Data analytics)

˃ Adapts to evolving algorithms and workload needs

2.5 million system logic cells

6,800 DSP engines

345 Mb on-chip memory
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Custom Architectures – The Key to Acceleration

˃ Custom dataflow pipelines

˃ Multiple stages executing simultaneously

˃ Streaming programming model

˃ Custom memory architectures

˃ Double-buffers, FIFOs, Shift-registers

˃ Custom datapaths, parallel and pipelined

˃ User-defined bitwidths
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FPGAs – High-Performance and Versatility

Database Analytics 25x
Jian Ouyang et al. "SDA: Software-Defined Accelerator for General-

Purpose Big Data Analysis System." Hotchips 2014. [Link]

Speech Recognition 43x
Song Han et al. "ESE: Efficient Speech Recognition Engine with Sparse 

LSTM on FPGA.“ International Symposium on FPGA 2017. [Link]

Genomic Analysis 80x
Edico Genome. "DRAGEN Genome Pipeline." Last accessed April 6, 

2017. [Link]

Pattern Matching 18x
Shreyas G Singapura et al. "FPGA Based Accelerator for Pattern 

Matching in YARA Framework.“ CENG 2015. [Link]

http://www.hotchips.org/wp-content/uploads/hc_archives/hc28/HC28.23-Tuesday-Epub/HC28.80-Big-Data-Epub/HC28.23.832-SDA-BD-Analysis-JianOuyang-Baidu-v06.pdf
https://arxiv.org/pdf/1612.00694.pdf
http://www.edicogenome.com/wp-content/uploads/2015/02/DRAGEN-Genome-Pipeline.pdf
http://ceng.usc.edu/techreports/2015/Prasanna CENG-2015-05.pdf
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Architecture of an FPGA Accelerated Application
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Initializing the Application

˃ When the application starts, the FPGA device only contains the “Shell”

The Shell will be managing the communications with the host

x86 CPU

FPGA

buf1buf0 buf0 buf1buf2 buf2

S
h

e
ll Custom Logic 

Region

MemoryMemory



© Copyright 2018 Xilinx

Initializing the Application

˃ When the application starts, the FPGA device only contains the “Shell”

The Shell will be managing the communications with the host

˃ First, the host initializes the runtime
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Initializing the Application

˃ When the application starts, the FPGA device only contains the “Shell”

The Shell will be managing the communications with the host

˃ First, the host initializes the runtime

˃ Then programs the device with the desired FPGA binary

x86 CPU
PCIe

FPGA
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Allocating Buffers and Migrating Data to the Device

˃ Host allocates input and output buffers in the device

Buffers are used to transfer data from the CPU to the FPGA and back

x86 CPU
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Allocating Buffers and Migrating Data to the Device

˃ Host allocates input and output buffers in the device

Buffers are used to transfer data from the CPU to the FPGA and back

˃ Host migrates data to be processed by the accelerator to the buffer FPGA

x86 CPU

FPGA

buf1buf0 buf0 buf1buf2 buf2
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Running the Accelerators

˃ Host schedules execution of the desired kernel

˃ The Runtime is responsible for starting the kernel at the right moment

˃ Kernel reads data from the input buffer, processes it and writes results in the 

output buffer previously allocated 

x86 CPU

FPGA
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Running the Accelerators

˃ Host schedules execution of the desired kernel

˃ The Runtime is responsible for starting the kernel at the right moment

˃ Kernel reads data from the input buffer, processes it and writes results in the 

output buffer previously allocated 

˃ After the kernel finishes processing the data, it notifies the host

x86 CPU

FPGA
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Migrating Data Back to the Host

˃ The host retrieves the results by scheduling a copy of the desired buffer back to 

host memory

x86 CPU

FPGA
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FPGA Acceleration : A Simplified View

func1 func2 func3 func4CPU

func2

func1 func3 func4CPU

FPGA

With FPGA acceleration

Without acceleration
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func2

func1 func3 func4CPU

FPGA

FPGA Acceleration : A More Accurate View

func1 func2 func3 func4CPU

With FPGA acceleration

Without acceleration

func1 func3 func4CPU

func2FPGA
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API calls to the interact with 

the FPGA accelerator

Data transfers between the 

host and the FPGA device
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Rule #1 – Remember Amdahl’s Law

˃ Consider overall performance, not just individual functions

˃ When working “top-down”, identify performance bottlenecks in the application

Use profiling tools, analyze the “roof line” of a Flame Graph

˃ Target accelerators that will impact end-to-end performance of the application

func1 func2 func3 func4CPU

It’s better to accelerate 

func2 by 2x…

…than to accelerate 

func3 by 50x !
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Rule #2 – Target Large, Compute-Bound Tasks

˃ Look for functions with where {compute time} is much greater than {data transfer time}

Good: Monte-Carlo – a few inputs, a lot of computations

Bad: Vector-addition – 2x more inputs than computations

˃ Prefer functions that perform a lot of processing per invocation to small functions 

which get called many times

Minimizes API calls and event management overhead

func1 func3 func4CPU

func2FPGA

RDPCIe WR

A
P

I

A
P

I

Accelerators run 

very fast…

But data transfers and 

API calls add latency
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Rule #3 - Know Your Ceiling

˃ Compute-bound problems (on the CPU) are good for FPGA acceleration

˃ But maximum throughput will be limited by PCIe

˃ Maximum acceleration potential : {PCIe throughput} / {SW throughput} 

func1 func3 func4CPU

func2FPGA

RDPCIe WR
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Acceleration performance 

can’t exceed PCIe throughput
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Rule #4 – Think Throughput, not only Latency

˃ Target applications with inherent SW and HW parallelism 

Task-level, Data-level, Instruction-level, Bit-level parallelism

˃ Adapt programming model to exploit parallelism

Threads, asynchronous programming, dataflow model

func1 func3 func4CPU

func2FPGA

RDPCIe WR

A
P

I

A
P

I

Aim to reduce 

CPU idle time

Aim to maximize 

kernel utilization

Customize datapath

for best performance 
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When to USE

– Algorithm allows for parallelization

– Many similar tasks

FPGA-Based Acceleration

When May Not be beneficial 

– Small problem size

– Cost of Host to Device transfers outweighs benefit

When NOT beneficial

– Little to no parallelism

• Algorithm is highly sequential over multiple data

• Tasks are highly dependent
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Developers vs End Users

Data CenterAccelerators FPGA Binary

EXE

Host Executable

End Users

˃ No need for development tools and skills

˃ Run Apps on FPGA-equipped servers

˃ Cloud or on-premise

Developers

˃ Require development tools and skills

˃ Can use 3rd party libraries of accelerated functions

˃ Develop for own use or for external customers
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The SDAccel Development Environment

˃ Fully integrated Eclipse-based IDE

˃ Develop host applications in C/C++

˃ Develop accelerators in RTL, C/C++ and OpenCL

˃ Debug, profiling and performance analysis tools

˃ Supports both GUI and command-line users Optimize

Develop Debug

Profile
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SDAccel Supports and Guides the Optimization Process

SDAccel Application Timeline View

˃ Start with the end in mind  conceptualize desired results

˃ Use visualization and guidance tools  confirm and converge

I want to achieve…
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VCU1525, 

U200, U250

SDAccel Makes FPGA Applications Portable

F1 2x.large, 

16x.large

VCU1525, 

U200, U250

FP1

F2, F3

˃ Develop once

˃ Build for different target platforms

˃ Deploy on-premise or in the cloud
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Visit www.xilinx.com/sdaccel to Get Started !

Learn and practice how to accelerate applications with FPGAs
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