
© Copyright 2018 Xilinx

Presented By

Thomas Bollaert

Senior Director, SW Applications

October 2nd, 2018

Fundamentals of FPGA-based 

Acceleration



© Copyright 2018 Xilinx

FPGA Acceleration : Boosting Application Performance

func1 func2 func3 func4CPU

FPGA handles compute-intensive, deeply pipelined, 

massively parallel operations. CPU handles the rest 

func2

func1 func3 func4CPU

FPGA

With FPGA acceleration

Without acceleration



© Copyright 2018 Xilinx

Customizable Architectures – The FPGA Advantage

FPGAs

˃ Flexible, fully customizable architecture

˃ Developer adapts the architecture to the program

CPUs and GPUs

˃ Fixed instruction set and rigid memory hierarchy

˃ Developer adapts the program to the architecture



© Copyright 2018 Xilinx

FPGAs – The Ultimate Parallel Processing Device

˃ No predefined instruction set or underlying architecture

˃ Developer customizes the architecture to his needs
Custom datapaths

Custom bit-width

Custom memory hierarchies

˃ Excels at all types of parallelism
Deeply pipelined (e.g. Video codecs)

Bit manipulations (e.g. AES, SHA)

Wide datapath (e.g. DNN)

Custom memory hierarchy (e.g: Data analytics)

˃ Adapts to evolving algorithms and workload needs

2.5 million system logic cells

6,800 DSP engines

345 Mb on-chip memory



© Copyright 2018 Xilinx

Custom Architectures – The Key to Acceleration

˃ Custom dataflow pipelines

˃ Multiple stages executing simultaneously

˃ Streaming programming model

˃ Custom memory architectures

˃ Double-buffers, FIFOs, Shift-registers

˃ Custom datapaths, parallel and pipelined

˃ User-defined bitwidths



© Copyright 2018 Xilinx

FPGAs – High-Performance and Versatility

Database Analytics 25x
Jian Ouyang et al. "SDA: Software-Defined Accelerator for General-

Purpose Big Data Analysis System." Hotchips 2014. [Link]

Speech Recognition 43x
Song Han et al. "ESE: Efficient Speech Recognition Engine with Sparse 

LSTM on FPGA.“ International Symposium on FPGA 2017. [Link]

Genomic Analysis 80x
Edico Genome. "DRAGEN Genome Pipeline." Last accessed April 6, 

2017. [Link]

Pattern Matching 18x
Shreyas G Singapura et al. "FPGA Based Accelerator for Pattern 

Matching in YARA Framework.“ CENG 2015. [Link]

http://www.hotchips.org/wp-content/uploads/hc_archives/hc28/HC28.23-Tuesday-Epub/HC28.80-Big-Data-Epub/HC28.23.832-SDA-BD-Analysis-JianOuyang-Baidu-v06.pdf
https://arxiv.org/pdf/1612.00694.pdf
http://www.edicogenome.com/wp-content/uploads/2015/02/DRAGEN-Genome-Pipeline.pdf
http://ceng.usc.edu/techreports/2015/Prasanna CENG-2015-05.pdf


© Copyright 2018 XilinxPage 7

Architecture of an FPGA Accelerated Application

PCIe

x86 CPU

Host Application

Drivers

Runtime Library

Acceleration API

FPGA

Accelerated Functions

DMA Engine

Global Memory

AXI Interfaces

User

Application

Code

Acceleration

Platform



© Copyright 2018 Xilinx

Initializing the Application

˃ When the application starts, the FPGA device only contains the “Shell”

The Shell will be managing the communications with the host

x86 CPU

FPGA

buf1buf0 buf0 buf1buf2 buf2

S
h

e
ll Custom Logic 

Region

MemoryMemory



© Copyright 2018 Xilinx

Initializing the Application

˃ When the application starts, the FPGA device only contains the “Shell”

The Shell will be managing the communications with the host

˃ First, the host initializes the runtime

x86 CPU

FPGA

buf1buf0 buf0 buf1buf2 buf2

S
h

e
ll Custom Logic 

Region

MemoryMemory

Runtime

Library



© Copyright 2018 Xilinx

Initializing the Application

˃ When the application starts, the FPGA device only contains the “Shell”

The Shell will be managing the communications with the host

˃ First, the host initializes the runtime

˃ Then programs the device with the desired FPGA binary

x86 CPU
PCIe

FPGA

buf1buf0 buf0 buf1buf2 buf2

S
h

e
ll

.xclbin Custom Logic 

Region

Acceleration

Kernels

MemoryMemory

Runtime

Library



© Copyright 2018 Xilinx

Allocating Buffers and Migrating Data to the Device

˃ Host allocates input and output buffers in the device

Buffers are used to transfer data from the CPU to the FPGA and back

x86 CPU

FPGA

Runtime

Library

buf1buf0 buf0 buf1buf2 buf2

S
h

e
ll Acceleration

Kernels



© Copyright 2018 Xilinx

Allocating Buffers and Migrating Data to the Device

˃ Host allocates input and output buffers in the device

Buffers are used to transfer data from the CPU to the FPGA and back

˃ Host migrates data to be processed by the accelerator to the buffer FPGA

x86 CPU

FPGA

buf1buf0 buf0 buf1buf2 buf2

S
h

e
ll

Runtime

Library Acceleration

Kernels

buf1buf0



© Copyright 2018 Xilinx

Running the Accelerators

˃ Host schedules execution of the desired kernel

˃ The Runtime is responsible for starting the kernel at the right moment

˃ Kernel reads data from the input buffer, processes it and writes results in the 

output buffer previously allocated 

x86 CPU

FPGA

buf1buf0 buf0 buf1buf2 buf2

S
h

e
ll

Runtime

Library Acceleration

Kernels

buf1buf0

kernel 

start

buf2



© Copyright 2018 Xilinx

Running the Accelerators

˃ Host schedules execution of the desired kernel

˃ The Runtime is responsible for starting the kernel at the right moment

˃ Kernel reads data from the input buffer, processes it and writes results in the 

output buffer previously allocated 

˃ After the kernel finishes processing the data, it notifies the host

x86 CPU

FPGA

buf1buf0 buf0 buf1buf2 buf2

S
h

e
ll

Runtime

Library

buf1buf0

kernel 

done

buf2



© Copyright 2018 Xilinx

Migrating Data Back to the Host

˃ The host retrieves the results by scheduling a copy of the desired buffer back to 

host memory

x86 CPU

FPGA

buf1buf0 buf0 buf1buf2 buf2

S
h

e
ll

Runtime

Library Acceleration

Kernels

buf1buf0buf2 buf2



© Copyright 2018 Xilinx

FPGA Acceleration : A Simplified View

func1 func2 func3 func4CPU

func2

func1 func3 func4CPU

FPGA

With FPGA acceleration

Without acceleration



© Copyright 2018 Xilinx

func2

func1 func3 func4CPU

FPGA

FPGA Acceleration : A More Accurate View

func1 func2 func3 func4CPU

With FPGA acceleration

Without acceleration

func1 func3 func4CPU

func2FPGA

RDPCIe WR

A
P

I

A
P

I

API calls to the interact with 

the FPGA accelerator

Data transfers between the 

host and the FPGA device



© Copyright 2018 Xilinx

Rule #1 – Remember Amdahl’s Law

˃ Consider overall performance, not just individual functions

˃ When working “top-down”, identify performance bottlenecks in the application

Use profiling tools, analyze the “roof line” of a Flame Graph

˃ Target accelerators that will impact end-to-end performance of the application

func1 func2 func3 func4CPU

It’s better to accelerate 

func2 by 2x…

…than to accelerate 

func3 by 50x !



© Copyright 2018 Xilinx

Rule #2 – Target Large, Compute-Bound Tasks

˃ Look for functions with where {compute time} is much greater than {data transfer time}

Good: Monte-Carlo – a few inputs, a lot of computations

Bad: Vector-addition – 2x more inputs than computations

˃ Prefer functions that perform a lot of processing per invocation to small functions 

which get called many times

Minimizes API calls and event management overhead

func1 func3 func4CPU

func2FPGA

RDPCIe WR

A
P

I

A
P

I

Accelerators run 

very fast…

But data transfers and 

API calls add latency



© Copyright 2018 Xilinx

Rule #3 - Know Your Ceiling

˃ Compute-bound problems (on the CPU) are good for FPGA acceleration

˃ But maximum throughput will be limited by PCIe

˃ Maximum acceleration potential : {PCIe throughput} / {SW throughput} 

func1 func3 func4CPU

func2FPGA

RDPCIe WR

A
P

I

A
P

I

Acceleration performance 

can’t exceed PCIe throughput



© Copyright 2018 Xilinx

Rule #4 – Think Throughput, not only Latency

˃ Target applications with inherent SW and HW parallelism 

Task-level, Data-level, Instruction-level, Bit-level parallelism

˃ Adapt programming model to exploit parallelism

Threads, asynchronous programming, dataflow model

func1 func3 func4CPU

func2FPGA

RDPCIe WR

A
P

I

A
P

I

Aim to reduce 

CPU idle time

Aim to maximize 

kernel utilization

Customize datapath

for best performance 



© Copyright 2018 Xilinx

When to USE

– Algorithm allows for parallelization

– Many similar tasks

FPGA-Based Acceleration

When May Not be beneficial 

– Small problem size

– Cost of Host to Device transfers outweighs benefit

When NOT beneficial

– Little to no parallelism

• Algorithm is highly sequential over multiple data

• Tasks are highly dependent



© Copyright 2018 Xilinx

Developers vs End Users

Data CenterAccelerators FPGA Binary

EXE

Host Executable

End Users

˃ No need for development tools and skills

˃ Run Apps on FPGA-equipped servers

˃ Cloud or on-premise

Developers

˃ Require development tools and skills

˃ Can use 3rd party libraries of accelerated functions

˃ Develop for own use or for external customers



© Copyright 2018 Xilinx

The SDAccel Development Environment

˃ Fully integrated Eclipse-based IDE

˃ Develop host applications in C/C++

˃ Develop accelerators in RTL, C/C++ and OpenCL

˃ Debug, profiling and performance analysis tools

˃ Supports both GUI and command-line users Optimize

Develop Debug

Profile



© Copyright 2018 Xilinx

SDAccel Supports and Guides the Optimization Process

SDAccel Application Timeline View

˃ Start with the end in mind  conceptualize desired results

˃ Use visualization and guidance tools  confirm and converge

I want to achieve…



© Copyright 2018 Xilinx

VCU1525, 

U200, U250

SDAccel Makes FPGA Applications Portable

F1 2x.large, 

16x.large

VCU1525, 

U200, U250

FP1

F2, F3

˃ Develop once

˃ Build for different target platforms

˃ Deploy on-premise or in the cloud



© Copyright 2018 Xilinx

Visit www.xilinx.com/sdaccel to Get Started !

Learn and practice how to accelerate applications with FPGAs



© Copyright 2018 Xilinx


