
Presented By

Patrik Strömblad

Senior System Architect

2018-12-10

High-Performance Real-Time Linux

Solution for Xilinx Ultrascale+

Use case for “accelerating” Linux
on Xilinx Ultrascale+

➢Embedded application wants all of:

➢ Linux features and API:s

➢ High performance

➢ Very low jitter and response time to external events

➢Needs more control processing/calculation performance than the R5:s

can provide

➢ Flexibility to use Cortex A53 cores for low overhead / real-time processing

➢Linux is not suitable for real-time

➢ Use preempt_rt patch?

➢ Other ways to use parts of the A53 cluster for real-time processing?

Embedded Linux challenge:

How to achieve the best of two worlds -
Needs Linux programming API, but also a hard real-time POSIX runtime

What everyone want:

➢ Standard Linux/POSIX API

➢ Portability and future proofness

➢ Hardware platform independence

➢ Independency of number of cores

➢ Deployment flexibility

➢ High performance, low OS overhead

➢ High determinism (low latency and jitter)

➢ Safety (robust, high availability)

➢ Security

But which are the challenges?

✓ Linux cannot provide real-time characteristics

✓ Linux has a quite high overhead in scheduling and OS calls

✓ ”Bare-metal” runtime feature level is very poor

✓ ”Bare-metal” runtime debug support is non-existent

✓ Linux multicore scaling neither linear, nor deterministic

✓ Existing RTOS:es cannot compete with Linux eco-system

✓ (Most) existing RTOS:es are only single-core kernels

✓ Cache and Memory hierarchies will hit you hard in memory
contention situations both on OS and application level

 Standard, unmodified SMP Linux

 A native SMP POSIX micro-kernel runs on a

partitioned set of isolated cores

 An integrated OS platform with IPC, shared file

system and debug console

 Suitable for legacy POSIX/RTOS customers that

wants to migrate to Linux and still have very high

realtime requirements

 <3 us worst case latency

Vertically partitioning on OS level using

type 1 hypervisor:

Modify Linux kernel

(code and configuration):

 PREEMPT_RT maintained by the Linux foundation.

 Might require significant changes compared to

“standard” Linux. Increases overhead for context

switches and system calls of around 10-50%.

 Less quality

 Offers full POSIX

 Suitable for low to moderate real-time

requirements

 ~50-100 us worst case latency

The PREEMPT_RT patch Dual-OS partitioning

(using hypervisor and uKernel)

Vertically partition Linux

user-space in two domains:

 Isolate RT threads from non-RT threads.

 Complex configuration, needs patching (ex

NOHZ_FULL) to remove ticks.

 Provides a deterministic bare-metal per core single-

thread execution environment

 Suitable for single-threaded, polling applications

pinned to a core.

 ~3-30 us worst case latency (poll)

 NOT suitable for embedded legacy, multithreaded RT

POSIX applications that uses OS API

Using system calls is discouraged, will cause

indeterminism and overhead!

User space Partitioning

(Core isolation)

Real-time functionsNon-real-time functions

Standard SMP Linux POSIX micro-kernel

Hypervisor

Linux

NO_HZ_FULL

Patched Kernel

Real-time functionsNon-real-time functions

Linux

PREEMPT_RT Patched Kernel

Real-time and non-real-time functions

Core

0

Core

2

Core

3

Core

1

Alternative ways to improve Linux for real-time on multicore:

Core

0

Core

2

Core

3

Core

1
Core

0

Core

2

Core

3

Core

1

Aspects of Linux behavior

˃ Kernel Preemption model (server, desktop, LL desktop, RT)
Important for performance / quality / predictability tradeoff

Server – fastest, RT slowest (10-50%)

˃ Scheduling model (ex: other, fifo, rr)
One of several system parameters, not the only!

Need careful consideration

˃ RT Throttling (prevent fifo/rr to consume 100%)
Side effect: rt task level may be swapped out)

˃ Load balancing
May cause unpredictable behavior – forces use of affinity

˃ Power Save, frequency scaling

Enabling power save features often decreases real-time characteristics

5

Improving control over Linux real-time capabilities:

˃ Configure kernel for desired application profile:
Server throughput, or multithreaded performance?

Overall deterministic behavior on protocol level or on I/O event level?

Must-have debug and trace in field capability?

Need for low power or can we speed up?

˃ If we run multicore, we have actually additional opportunities for partitioning.

˃ Isolating an application to a set of cores
Disabling the load balancer to move to isolated core-set

Remove non-RT interrupt from isolated set causes jitter

˃ Full dynamic ticks
Turns ticks off (low as 1Hz) if core single-threaded with no posix timers

6

Don’t share writable states among cores!

˃ Avoid memory contention!

Avoid using shared data, even if it is not protected by lock!

Avoid locating unrelated data on the same cache line!

˃ Memory contention causes a huge coherency traffic

‘Cache thrashing’, or ‘cache line ping-pong’, severely degrades
performance as the number of cores grow!

˃ Taking a spinlock may add a large and unpredictable

penalty that increases per core as cores are added!

˃ With more than 4-8 cores, frequent memory contention may rapidly

degenerate overall performance and increase latency!

˃ Example: the use of an atomic operation for a statistical global

counter may hide a very long non-deterministic stall due to cache

line ’ping-ping’ storm!

Use local counters instead!

7

In neither OS nor application!

Main Memory

Core 0

Thread 0

Core 1

Thread 1

Cache Cache

Cache line Cache line

The Jailhouse Architecture

˃ Build static partitions on SMP systems
Flexible partitioning, runtime controlled

˃ Use hardware assisted virtualization
Supports ARMv8 and Ultrascale+

˃ Does not schedule VM on cores
Very thin hypervisor layer (low overhead)

1:1 device assignment, memory mapped

˃ Splits up running Linux systems
Starts native, ”migrates” to be virtualized after
boot

˃ Simplicity over features
<10k lines of code (kernel module)

Assumes multicore, one guest per core

8

Linux Linux Linux

Jailhouse

Hardware Hardware

RTOS/

Linux/

Baremetal

Jailhouse

Core 0 Core 1 Core 2 Core 3

Device

A

Device

B

Device

C

Device

D

Configuration
Images

Boot phase Partitioning phase Operational phase

Accelerated Linux on Xilinx Ultrascale+

Linux:

˃ Runs any standard yocto SMP Linux

˃ Includes Jailhouse hypervisor

Guest Management (load, start, stop, restart)

Realtime Accelerator domain:

˃ Run SMP POSIX ukernel

˃ FPGA SDK (XIL Library)

˃ OpenAMP to R5: Remoteproc/RPMsg

9

Real-time GuestLinux Root Guest

Jailhouse Hypervisor

Linux kernel (1-2 cores) uKernel (2-3 cores)

FPGA

Core 0 (A53) Core 1 (A53) Core 2 (A53) Core 3 (A53)

Ethernet

R5 (0) R5 (1)

freeRTOS Baremetal

Non-realtime Linux applications High-performance, RT/POSIX applications Critical, HRT loops

RT Domain

ivshmem RPMsg / virtio

Low-latency transfer of ”big” data

using shared memory

using Jailhouse Hypervisor

Accelerated Linux on Xilinx Ultrascale+

Important features:

˃ Network O&M services:
Enea IPC (Linx) between Linux and RT domain

TCP/IP connectivity over ptp Ethernet (TAP)

˃ Common O&M services:
Shared file system (Linux FS mounted as POSIX file system on RT side)

System debug tools of RT domain: Rumode gdb, trace, dump, profiling

˃ High-bandwidth data transfer to/from RT domain:
Shared pool of very large buffers. Passing pointer objects to buffers over IPC

Uses shared, cache-coherent memory to copy data

˃ Access to Xilinx Ultrascale+ devices:
openAMP/RPMsg IPC to R5

XIL Library access to FPGA

10

Native OSE microkernel:

‒ OSE 5.9 for ARMv8 set up for SMP 4 cores A53

Enea Accelerated Linux with Jailhouse

‒ PetaLinux 2017.2 (set up for core 0)

‒ Jailhouse ver 0.7 (configured for 1 root cell (1 core) and one guest cell (3 cores)

‒ OSE 5.9 for ARMv8 set up for SMP 3 cores A53
▪ Alt 1: direct access to GICv2 (gic paravirtualization, bypass hypervisor mode to guest)

▪ Alt 2: unmodified bsp)

Linux + Xen

‒ PetaLinux 2017.1 (set up for core 0)

‒ Xen ver 4.9 (patched for ”null” scheduler)

‒ OSE 5.9 for ARMv8 set up for SMP 3 cores A53

Jailhouse versus Xen and native benchmark setup

11

˃ Benchmarks for OSE running on a Zynq Ultrascale+ board for the following scenarios

OSE standalone (or OSE running as Jailhouse guest when GICv2 paravirtualized)

OSE running as Jailhouse Hypervisor guest (unmodified)

OSE running as Xen guest, using the null scheduler (Xen v 4.9 or later)

OSE running as Xen guest, using credit2 scheduler

Jailhouse versus Xen benchmarks

Minum Latency Average Latency Maximum Latency

Native OSE /Jailhouse 0.9 µs ~0.9 µs 1-2 µs

Jailhouse Hypervisor 1.5 µs ~1.5 µs 2-3 µs

Xen, null scheduler 2.8 µs ~2.9 µs 3-5 µs

Xen, credit2 scheduler 2.7 µs ~3 µs 5-7 µs

12

Jailhouse benchmark Conclusions

The cyclictest benchmark indicates that worst case task response latency in RT domain well below 3
us (not counting core 0) even when A53 cores are under load

‒ will meet RT requirements for 5G L1/L2 baseband control & radio!

Average time overhead for latency is very small compared to Linux

‒ more time spent in application processing!

OS overhead for scheduling and timer handling is around 10-15x smaller than in Linux

‒ more time spent in application processing!

The Jailhouse hypervisor adds almost no overhead for a guest

‒ the RTOS kernel guest has almost same latency & performance as if running bare-metal!

13

Demo

14

