

Multimedia SoC System Solutions

Presented By

Yashu Gosain & Forrest Picket: System Software & SoC Solutions Marketing Girish Malipeddi: IP Subsystems Marketing

>Zynq Ultrascale+ MPSoC and Multimedia blocks

- > Software overview
- > Multimedia Framework
- > Target Reference design
- > Platforms

Multimedia Blocks

Zyng[®] UltraScale+[™] MPSoC EV Devices

Next-Generation SoC with Integrated Video Codec

Different classes of Graphics Processing unit

© Copyright 2018 Xilinx

EXILINX.

ARM Mali-400 MP2

Feature	Benefit	
ARM Mali™-400 MP2 up to 667MHz	 Most power-optimized ARM GPU with Full HD support (1080p) Ideal for 2D vector graphics and 3D graphics (e.g., HMI, waveform processing) Supports open standards, e.g., OpenGL ES 1.1 & 2.0 	
Native Embedded Linux Support	Out-of-the-box drivers and libraries for graphics support	
Dual Pixel Processors	 Up to 1.3 GPix/s fill rate for smoother transition and frame rate Up to 20 GFLOPS shader rate for complex 3D scenes 	
Optimized Memory Interface	Tightly coupled w/memory controller for efficient communication with DisplayPort controller	

Full HD (1920x1080) GLmark2 Benchmark

Video Codec Implementation Strategies

Integrated H.264/H.265 Video Codec Engine

Feature	Benefit
Integrated Video Codec Unit	 Up to 4K UHD (60 fps) or 8Kx4K (15 fps) Up to 8 simultaneous streams Flexible memory topology to enable scalable system performance
Power Management, Performance Monitoring	 Clock gating (codec firmware automatically clock gates unused engines) Measure task execution time, bandwidth, and latency for fast design optimization

E XILINX.

Architecture Overview

Feature	Benefit		
Video Resolution	Upto 4kp30 Hz		
Audio Support	2 Channel of 24 bit Audio upto 96 KHz		
Multiple channel	Once channel of Graphics and Video		
Features	 Chroma Keying Alpha Blending Live and Non-live video 		

Memory Subsystem

Feature	Benefit
Dedicated DDR Memory Controller	Integrated in processing system for lower power usage and reduced latency
6 AXI Ports For Shared System Access	Multi-ported controller enables PS and PL shared access to common memory
32/64-bit Configurable Widths w/ECC	Supports varying data widths from processing engines
256KB On-Chip Memory (OCM) w/ECC	 Low latency memory decreases cost for additional external memory Shareable by Cortex-A53s, Cortex-R5s, and programmable logic
Tightly Coupled Memory (TCM)	Low-latency, deterministic memory access for Cortex-R5s in functional safety applications

Supported Interfaces in Processing System

	(Mb/s)	
DDR4	2400*	
LPDDR4	2400	
DDR3	2133	
DDR3L	1866	
LPDDR3 *DDR4 up to 2,667N	1800 lb/s in Programmable Logic	

Programmable Logic IPs Video capture and Display

	MIPI mipi	SDI I2G SDI	DisplayPort D
HDMI2.0 @6Gbps/lane	MIPI CSI Rx and DSI Tx	12G-SDI	DisplayPort TX
4K60 RX and TX	DPHY@ 1.5Gbps/lane	4K60	4K60 in Programmable logic
RGB and YUV	RAW, RGB and YUV	YUV	4K30 in Programmable PS

Programmable Logic IPs Video and Image processing

Video Processing subsystem	ISP	Video Mixer	Frame Buffer
Scaling, Color space conversion, deinteracing Up to 4K60	Demosaic and GammLUT Up to 4K60	8 Layers of mixing + graphics	Write and Read Frames for Video codec consumption

Software Overview Multimedia Components

Typical Video Pipeline

> Different solutions, provided by different subsystems:

- >>FBDEV: Framebuffer Device
- >>DRM/KMS: Direct Rendering Manager / Kernel Mode Setting
- >>V4L2: Video For Linux 2

> How to choose one: it depends on your needs

- Each subsystem provides its own set of features
- Different levels of complexity
- Different levels of activity

Video For Linux (V4L2)

Key Feature

> Frame-based video pipelines with streaming and/or memory interfaces

>>Video capture devices

>>Video memory to memory devices

>>Video output devices (no graphics)

DMABUF

>>0-copy buffer sharing

Media controller

>>Describes logical topology and data-flow

Multimedia libraries

>>Gstreamer, OpenCV, OpenMAX

Top View- Capture Pipeline

DRM/KMS

Direct Rendering Manager (DRM)

- > Introduced to deal with display cards with embedded GPUs
- > KMS stands for Kernel Mode Setting and is a sub-part of the DRM API
 - >> Provide a way to configure the display pipeline of a graphic card (or an embedded system)

Top View of Display Pipeline

Graphics Software Stack

VCU Software Stack

- Control Software allows control of the VCU at a low level
 >Direct access to the low level drivers
- GStreamer provides Video Framework at a high level
- ➤ Zynq[®] UltraScale+[™] EV devices are true solution-level products from Xilinx

EXILINX

ALSA Framework

Multimedia Solution Gstreamer Framework

Multimedia Pipeline

What is Gstreamer framework?

Solution > <u>GStreamer</u> is a pipeline-based multimedia framework for creating streaming media applications

> A Multimedia framework designed to be cross-platform

> Various types of media processing can be realized by describing data flows, called 'pipelines', with components, called 'plugins'.

> Over 200 plugins exist

> Gstreamer operates dynamically at *run time*

Why Gstreamer Framework?

> Multimedia challenges

- >> Creating Multimedia pipeline is complex process.
- >> Lack of reuse of code among different media processing block
- >> Inconsistent APIs among different codecs, Libraries and devices

> Gstreamer open-source collaborative solution for non-trivial media frameworks

- >> allows processing units to be treated generically "Elements" are connected at connection points
- >> Along with related/associated open solutions (e.g. Linux, DRM, ALSA, OMX, V4L2

> Mature Code base and widely used

> Fundamentally the reason is to leverage the huge amount of work – aka "re-use"

GStreamer Framework

Target Reference Designs

VCU TRD on the ZCU106 Board

ZCU102 base TRD

Platform for acceleration

Platform-Based Development

reVISION Platforms: Single sensor platform

- Platform Support for Zynq US+ Boards: ZCU102 and ZCU104
- Live capture over HDMI, MIPI, USB
- > Display over HDMI or DP
- Neural network support for AlexNet, GoogLeNet, VGG, SSD, and FCN
- OpenCV acceleration support thru Xfopen CV
- > Linux sample designs
 - Dense optical flow Lucas-Kanade
 - 2D Filter for sharpening and edge detect
 - Stereo depth vision

reVISION Platforms: Multi-camera Imaging and Analytics

Kit sold by Avnet On-semi MARS: 2MP AR0231 camera MAX96705 GMSL serializer Avnet MULTI_CAM4-G: 4-camera input MAX9286 GMSL Quad De-serializer

> Linux drivers for

- > AR0231
- MAX96705 Deserliazer
- MAX9286 Serializer

- > reVISION platform support for Zynq US+ Boards: ZCU102 and ZCU104
 - Linux based reference designs with
 - Quad camera capture pipes, OpenCV accelerators and Live Display
 - Sample designs showing OpenCV acceleration on quad cameras
 - Optical flow
 - Filter_2D

DEVELOPER FORUM

