
Presented By

Brian Lay

Product Marketing Manager

12/10/2018

Revision Control Methodology

Agenda

˃ Motivation

˃ Recommendations for implementing a revision control strategy

RTL projects

IP projects

BD projects

˃ Future improvements

Importance of Maintaining a Revision Control Strategy

˃ Reproduce previous results

˃ Board revisions

˃ Co-development

˃ Compliance

˃ Revenue

Implementing a Revision

Control Strategy

Foundations of Vivado

Non-Project Flow

(read_verilog, read_vhdl, place_design)

Project Flow

(add_files, import_files, launch_runs)

GUI – executes project Tcl

Focusing on project based scripted flow

Strategy for Successful Revision Control

˃ Use scripted flows for revision control

˃ Keep sources external to the project

˃ Revision control the source repository

˃ Generate a script to recreate the project

˃ Revision control the script

˃ Test your methodology

Adding Sources to Projects

˃ Use add_files for all sources

Keeps sources external to the project

Un-check “Copy sources into project”

˃ Filesets contain all project sources

get_filesets

Four “default” filesets

get_files –of [get_filesets]

RTL Example

./my_repo/2018.2

bft.vhdl

FifoBuffer.v

async_fifo.v

bft_package.vhdl

core_transform.vhdl

round_1.vhdl

round_2.vhdl

round_3.vhdl

round_4.vhdl

bft_full.xdc

build.tcl

./userdir

./my_repo/2018.2

./workspace

build.tcl ./workspace

vivado –source ../my_repo/build.tcl

Creating a Project Script

˃ Manually create the script

Minimalist

Organized

Risk missing some settings

˃ Automatically create the script using write_project_tcl

Verbose

Complicated

Robust, should not miss any settings

˃ Scripts must be maintained as projects evolve

build.tcl

xadd_sub_0/

xadd_sub_0.xci

*

Understanding Xilinx IP
WorkspaceXilinx IP Repository

vivado/<version>/data/ip/xilinx/

2018.1

unique RTL

Templates, etc.

component.xml

RTL with parameters

constraints, etc.

xadd_sub_v3_0

2018.2
component.xml

RTL with parameters

constraints, etc.

xadd_sub_v4_0

unique RTL

Templates, etc.

Upgrade to v4_0

IP ver - v3_0

Params – A:8,B:8,Z:9

xadd_sub_0.xci

IP ver – v3_0

Params – A:8,B:8,Z:9

xadd_sub_0.xci

Source Repo

build.tcl

xadd_sub_0/

xadd_sub_0.xci

.ignore

Xilinx IP Revision Control Options

˃ Two real options

XCI or XCIX

˃ Recommendation

Start with only the XCI file

On upgrade switch to XCIX for IP with changes that are too disruptive

1 In the existing version of Vivado that generated the original XCI
2 Rebuild project using the existing version of Vivado and open project with latest version
3 With Out-of-context synthesis and IP caching enabled, compile time differences may be negligible

IP Files to Revision Control Size Compile time Re-customizable1 Forced to upgrade2

XCI S Slow3 Y Y

TCL (write_ip_tcl) S Slow3 Y Y

Whole IP directory L Fast Y N / locked

XCIX M Fast Y N / locked

DCP S Fast N NA

Avoid Using the DCP

˃ A DCP generated out-of-context (OOC) is unconstrained

˃ IP are synthesized OOC

˃ Scoped timing constraints are used during the OOC synthesis run

˃ Timing constraints are discarded prior to writing the DCP

˃ Using the XCI or XCIX files ensure a fully constrained design

Managing Custom IP Using Repositories

˃ Develop IP in a revision controlled working directory

˃ Package the IP into a custom IP repository

Follow Xilinx IP repository directory structure as a reference

<vivado_version>/data/ip/<company>/<IPname_version>

˃ Working project directories

Set IP repository path

Add XCI

Add both to the build script

Custom IP Repository

2018.1/…
2018.1/

sources

build.tcl

Revision

Control

IP 2018.1

2018.1/

sources

build.tcl

Project 2018.1 Working

Directories

Upgrading Custom IP (using Xilinx IP) Repositories

1. Create new IP directory from previous sources

2. Upgrade project and check in new IP files

3. Re-package all IP into new custom <vivado_version> repository

4. Rebuild project directory from previous sources

5. Update the IP repository

6. Upgrade project and check in new project files to repository

Revision

Control

Working

Directories

Custom IP Repository

2018.1/…

2018.2/…

2018.1/

sources

build.tcl

IP 2018.2

IP 2018.1

2018.2/

sources

build.tcl

2018.1/

sources

build.tcl

2018.2/

sources

build.tcl

IP 2018.2

Project 2018.1

Project 2018.2

1

2
3 4

5

6

Propagation of Parameters in Block Designs

design_1.bd

Xilinx IP Repository

vivado/<version>/data/ip/xilinx/

2018.2

component.xml

RTL with parameters

constraints, etc.

v_hdmi_tx_ss_0_v3

component.xml

RTL with parameters

constraints, etc.

v_hdmi_tx_ss_0_v2

2018.1

Workspace

unique RTL for BD/IP, etc.

Propagate parameters

Identify conflicts

Update XCI / BD

IP_ver = _v2

Non-default IP params

XCI name for each instance

design_1.bd

IP_ver = _v2

Non-default IP params

XCI name for each instance

Upgrade to V3

_v2

build.tcl

design_1/

design_1.bd

ip/

v_hdmi…_v2/*

.ignore

Source Repo

build.tcl

design_1/

design_1.bd

.ignore

Preserving Block Designs

˃ Recommendation

Use write_bd_tcl to preserve entire BD including layout

If you want selective IP upgrade, then move towards BD

BD file to revision control Size Compile time Preserve Layout Forced to upgrade

BD S Slow1 N2 Y3

TCL (write_bd_tcl) S Slow1 Y4 Y

Whole BD directory L Fast Y N / locked

1 With Out-of-context synthesis and IP caching enabled, compile time differences may be negligible
2 Can be preserved by checking the BD/ui directory
3 Not with selective IP upgrade. Generated output products of IP still need to be preserved
4 Use –include_layout flag

Additional Files to Revision Control

˃ Other source files

XDC

Simulation test benches

Sysgen IP

HLS IP

Pre/post tcl scripts

Incremental compile DCPs

ELF files

˃ Util_1 source set introduced in 2018.1

Files are now managed by the project

Included in a project archive

Output Files to Consider for Revision Control

˃ Simulation scripts for 3rd party simulators (export_simulation)

˃ Hardware definition files for SDK (export_hardware)

˃ DSAs for export to SDx (write_dsa)

˃ Bitstreams (generate_bitstream)

˃ Hardware debug (.ltx, .lpr, debug dashboards)

˃ Intermediate run results (runs / checkpoints)

Future Revision Control Improvements

˃ Auto create .ignore files

˃ Separate output products from the sources

˃ Make the BD the one true source for a design

˃ BD Differences

Compare two BD to understand the differences between the designs

Summary

˃ Vivado provides the frameworks to develop your revision control strategy

˃ Six general steps

Use scripted flows for revision control

Keep source files in a repository

Revision control the repository

Create a Tcl script to recreate the project

Revision control the script

Test your scripts

