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Topics for Today

˃ Implementation Flow: Built for Timing Closure

˃ SSI Design: Tips for Maximizing Performance

˃ Timing Closure: Automating Solutions
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Implementation Flow

Built for Timing Closure
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Start New Projects with Latest Vivado Versions

2012-2013 2013-2014 2015-2016 2017-2018+

opt_design opt_design
+HFN global buffering

opt_design
+Hierarchy-based replication

driver merging

opt_design

power_opt_design power_opt_design power_opt_design power_opt_design

place_design place_design place_design place_design
+PSIP (phys_opt_design replication, 

MAX_FANOUT support)

+HFN global buffering

+phys_opt_design
+replication, retiming, 
and re-placement

phys_opt_design phys_opt_design
+SLR crossing optimization

route_design route_design route_design route_design
+PSIR (phys_opt_design replication and 
re-routing)

+phys_opt_design (post-route)
+critical path replication and 
re-routing

phys_opt_design
+SLR crossing optimization

More and more Timing Closure features built into Implementation

Bold indicates required flow step
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-directive AggressiveExplore (2018.3)

+More exhaustive thresholds and effort levels

Core Placement and Routing Improvements

˃ Replication provides better default QoR

PSIP (Physical Synthesis In Placer) enabled by default starting 2018.2

New MAX_FANOUT recommendations

‒ Synthesis: use MAX_FANOUT only on local, low-fanout replication, not design-wide signals

‒ PSIP: use MAX_FANOUT to suggest replication candidate nets during placement phase

PSIR (Physical Synthesis In Router) introduced 2018.1 for UltraScale+

˃ Router directives for higher design performance

New directives built on top of Explore

More runtime tradeoffs
-directive NoTimingRelaxation

+Maintain original timing targets (don’t relax)

-directive Explore
Post-route critical path optimization

US+ clock skew optimization
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The New Incremental Compile Flow

Incremental ImplementationIncremental Synthesis

Reference 

RTL synth Reference

Synth DCP
impl Reference

Impl DCP

Revised 

RTL synth impl Incremental

Impl DCP

Incremental

Synth DCP

read_checkpoint

-incremental

read_checkpoint

-incremental

write_checkpoint

-incremental_synth
write_checkpoint

˃ Incremental Synthesis and Implementation bolt together to reduce 
compile time and preserve timing-closed results

˃ Incremental Synthesis minimizes netlist changes
Requires write_checkpoint -incremental_synth option to save incr data
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Automatic Incremental Implementation for Projects

˃ Pushbutton mode where Vivado manages Incremental DCP for each run

launch_runs

impl
Incremental

Impl DCP

Revised

Synth DCP

Reference

Impl DCP

New in 2018.3
Recirculates latest routed DCP as the reference DCP

‒ if it is a good fit

Reference DCP added to sources in utility_1 fileset

‒ Captured in project archives
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SSI Design

Tips for Maximizing 

Performance
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Proliferating SSI as the Platform of Choice

˃ Vivado placement and routing are continuously improving in 

basic key areas

Delay Estimation - more accurate pre-route modeling of SLR crossings

Congestion - better spreading near SLR crossings

SLR Crossing Speed - more opportunistic use of SLL registers

˃ New features improve quality of Partitioning and Placement

USER_SLR_ASSIGNMENT: Control partitioning of cells

USER_CROSSING_SLR (EA): Control partitioning based on nets/pins

Laguna TX_REG -> RX_REG direct connection (UltraScale+ only)

USER_SLL_REG (EA): SLL (Laguna) register preference to improve 
speed, predictability

SLLs

SLR2

SLR1

SLR0

VU9P: 3 SLRs



© Copyright 2018 Xilinx

Partitioning with USER_SLR_ASSIGNMENT

˃ Hierarchical cell property (not for leaf cells)

Assigns cells to SLR when SLR name is used: SLR0, 
SLR1, SLR2, ...

Keeps cells in same SLR when value is a string

Tries to prevent cells from crossing SLR boundaries

˃ More flexible than Pblocks

Soft constraint, ignored if prevents successful partition

Placer, PhysOpt not restricted by Pblock bounds

˃ Add pipeline registers on cell boundaries

Helps maintain clock speed

Allows even greater placement flexibility

SLR1

SLR0

Add pipeline 

registers for 

placement 

flexibility

IP2

IP3

IP1

IP4 IP5

set_property USER_SLR_ASSIGNMENT SLR1 {IP1 IP2}

set_property USER_SLR_ASSIGNMENT SLR0 IP3

set_property USER_SLR_ASSIGNMENT group0 {IP4 IP5}
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USER_CROSSING_SLR (Early Access Until 2018.3)

˃ Soft constraint: pin/net property for fine-tuning SLR partitioning

˃ Specifies a preference that connections should cross an SLR boundary

True applies only to single-fanout pipeline register connections

False applies to any net or input pin except internal library macros: PRIMITIVE_LEVEL == 
INTERNAL (restriction removed in 2018.3)

SLR 

Boundary

Apply FALSE

Apply TRUE

Register pipeline

for traversing SLRs
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Using UltraScale+ SLL Registers

˃ TX_REG can drive RX_REG directly (2018.1)

Router adjusts leaf clock skews to fix hold

Fits most intra-clock topologies

Not for use with Clock Domain Crossings

˃ Use USER_SLL_REG register property (2018.3)

Easier method to move register from fabric to 
nearby Laguna register

Similar behavior as IOB property

˃ Use BEL and LOC to constrain and lock SLR 

crossing interfaces

Register pipelines

for traversing SLRs

Consistent crossing performance

Laguna

Column

Reduced vertical

congestion for

wide bus crossings
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Timing Closure

Automating Solutions
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report_qor_suggestions (RQS)

˃ Reduce timing closure time and effort (Introduced in 2017.1)

˃ Run report and follow suggestions

˃ Example: RQS analysis generated suggestions to:

Improve congestion

Improve critical paths ending at control pins

RQSPreSynth.xdc output file
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Applying Suggestions

synth_1 impl_1 RQS Suggestions

RQSPreSynth

RQSImplCommon

RQSPreImpl

RQSImplCommon

Relaunch

current run

synth_2 impl_2

RQSPreSynth

RQSImplCommon

RQSPreImpl

RQSImplCommon

Or copy run

and launch

Launch

Runs

˃ RQS Automation Roadmap

2018.3: Interactively create & launch runs

2019.X: Integrate Incremental Compile

2019.X: Dynamically update suggestions 

throughout the flow 

> Design sources frozen?

 Start with Implementation

> Design sources in development?

 Start with Synthesis

> Add RQS XDC and Tcl.pre files
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Introducing report_qor_assessment (RQA) in 2018.3

˃ How likely will design goals be met? Evaluates an entire design and generates a 

simple score

Implementation will fail, stop flow

Timing will fail, review RQS

Timing difficult, add many strategies

Timing fair, add a few strategies

Timing easy to meet

1

2

3

4

5

Assessment Scores
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Assessment and RQS Suggestion Integration

report_qor_suggestions

Suggester

report_qor_assessment

Assessor Timing

Utilization

Congestion

Clocking

Constraints

Prioritized 

Scoring

Overall design

assessment: 1-5

Timing

Assessment is used to generate RQS suggestions

Suggestion 

Database

Congestion

Utilization

Clocking

Constraints

RQS

Presynth

RQS

PreImpl

RQS

ImplCommon

Suggestions: 

Tcl/XDC

ML Custom 

Strategies

(Roadmap)
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Summary

˃ Begin new projects with the latest Vivado version

2018.3 planned for mid-December

˃ Use Incremental Compile to reduce compile times and preserve timing closure

˃ Apply new SSI constraints to improve UltraScale and UltraScale+ performance

˃ Benefit from automated analysis and solutions: report_qor_assessment (2018.3) 

and report_qor_suggestions (Now)

˃ Please share feedback on problems and improvements
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