

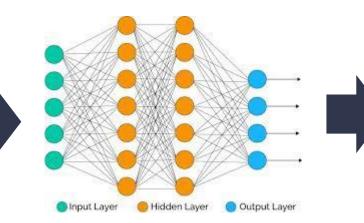
Xilinx Machine Learning Strategies with Deephi Acquisition

Presented By

Yi Shan, Sr. Director, AI Engineering & Former CTO of DeePhi

The Hottest Research: AI / Machine Learning

Nick's ML Model Nick's ML Framework



copyright sources: Gospel Coalition

AI/ML Monetization Is Here and Growing

ေတြ Anazon GO, Daimler, SK Telecom

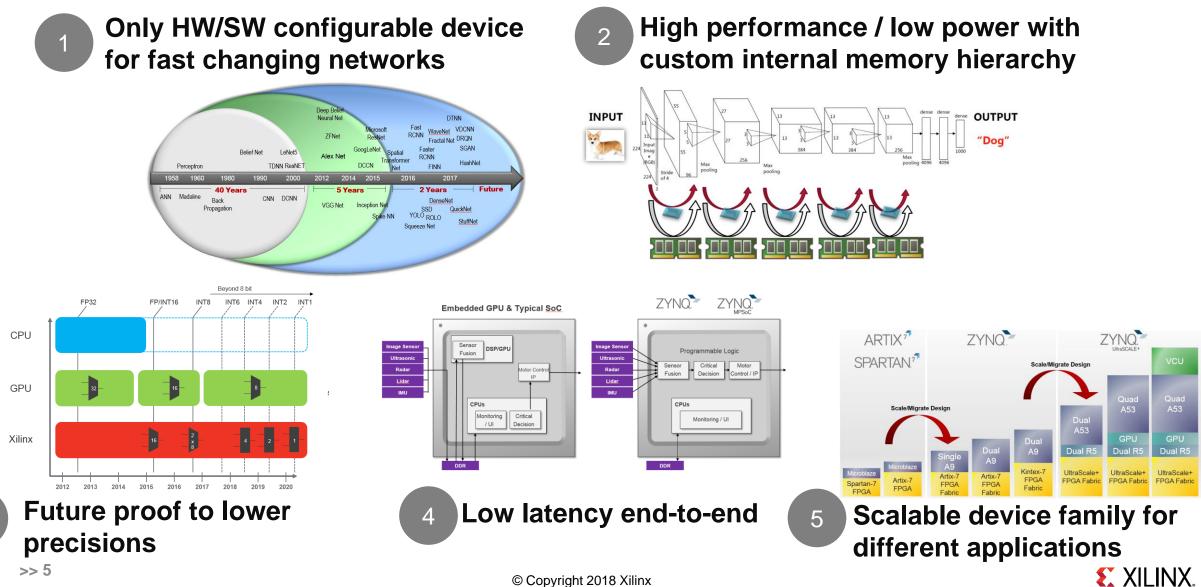
E XILINX.

Challenges in Monetizing AI/ML

1080p Object Detection (SSD) @ 30 FPS

< 10W, < 50 ms latency, <\$50

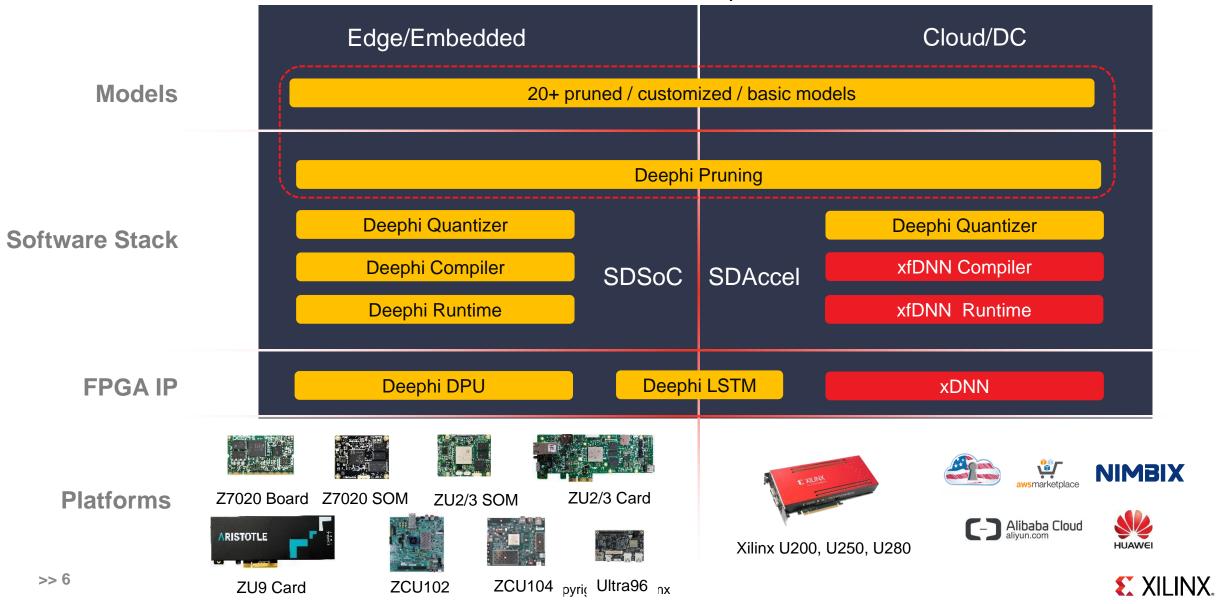
Who is Xilinx? Why Should I Care for ML?



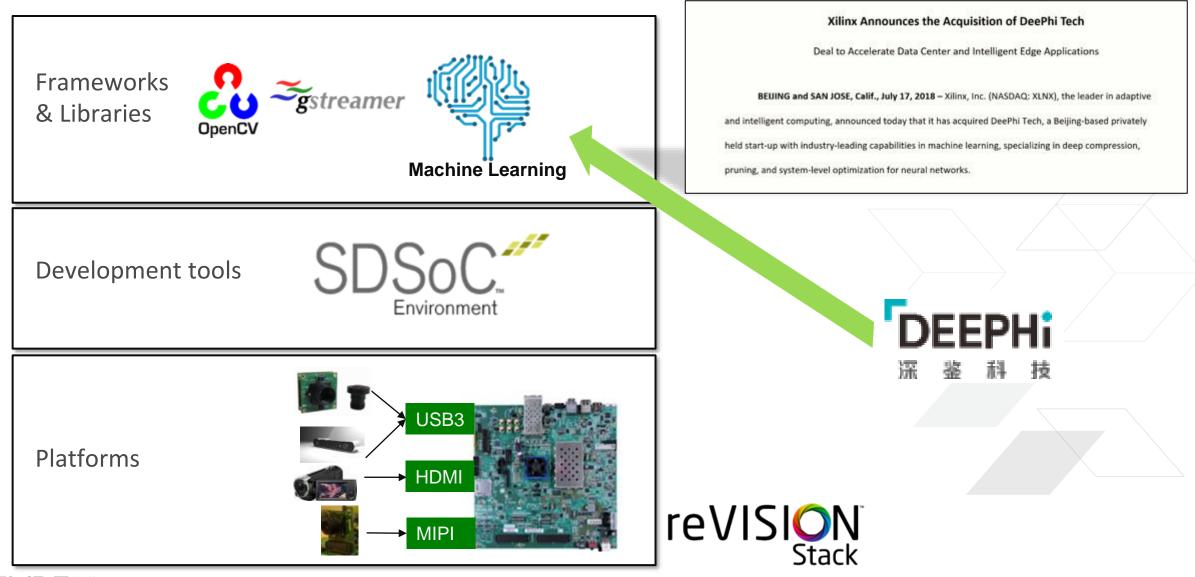
3

Integrated Xilinx-Deephi Roadmap

Xilinx AI Development



Deephi as key part of Embedded Vision Development



© Copyright 2018 Xilinx

DEEPHi Now 深鉴科技 Part of XILINX。

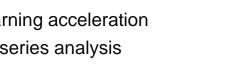
© Copyright 2018 Xilinx

Long History, Close Collaboration, and Better Future

Collaboration with Xilinx University Program

Deep learning acceleration Time series analysis Stereo vision

.



Development of products on Xilinx FPGA platform since inception of DeePhi

Face recognition Video analysis Speech recognition acceleration

.

深 鉴 技 **Co-Marketing and Co-Sales** with Xilinx Team

> Data Center Automotive Video surveillance

> >

DEEPHi 深 技 市斗 釜 Now Part of Xilinx

Now Part of Xilinx

Provide DPU IP + software tools Al performance level up significantly

Xilinx owns massive industry customers Provide wide range of applications

Pioneer in sparse-neural-network-based AI computing, explorer from theory to commercialization

NIPS 2015: Top conference in neural information processing FPGA 2016 & 2017: Top academic conference in FPGA ICLR 2016 : Top academic conference in machine learning ISCA 2016 : Top academic conference in computer architecture Hot Chips 2016 : Top academic conference in semiconductor First prize of tech innovation China Computer Federation

Registering more than 100 invention patents both in China and US

First Paper in the World on Compressed and Sparse Neural Networks "Learning both Weights and Connections for Efficient Neural Networks", NIPS 2015 <u>"Deep Compression", ICLR 2016 Best Paper</u>

First Paper in the World on Sparse Neural Network Accelerator "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016

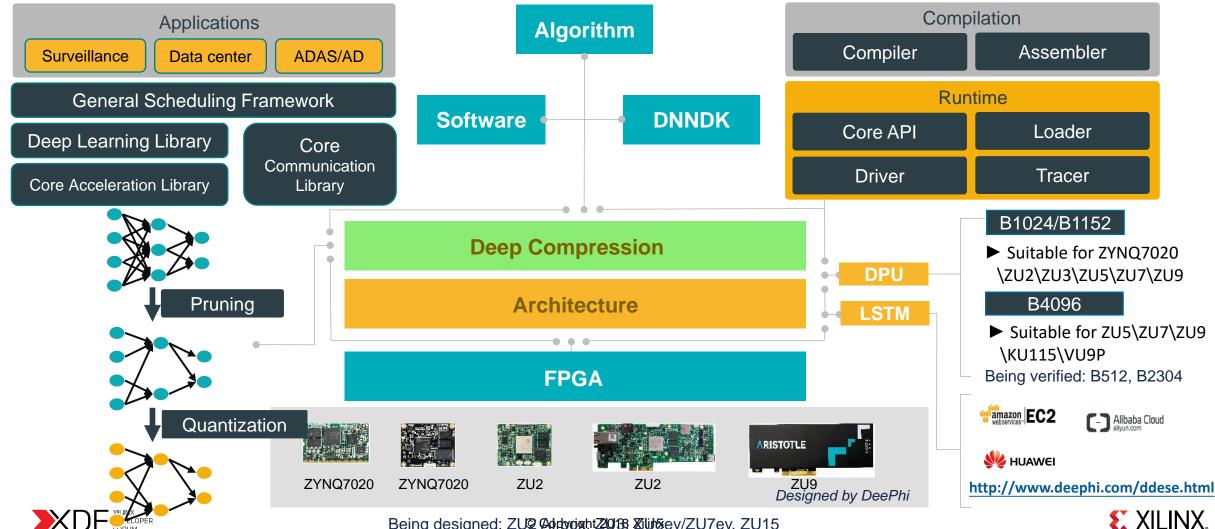
First Practical Case Using Sparse Neural Network Processor

Collaboration with Sogou Inc, partly revealed in :

"ESE: Efficient Speech Recognition Engine with Compressed LSTM on FPGA",

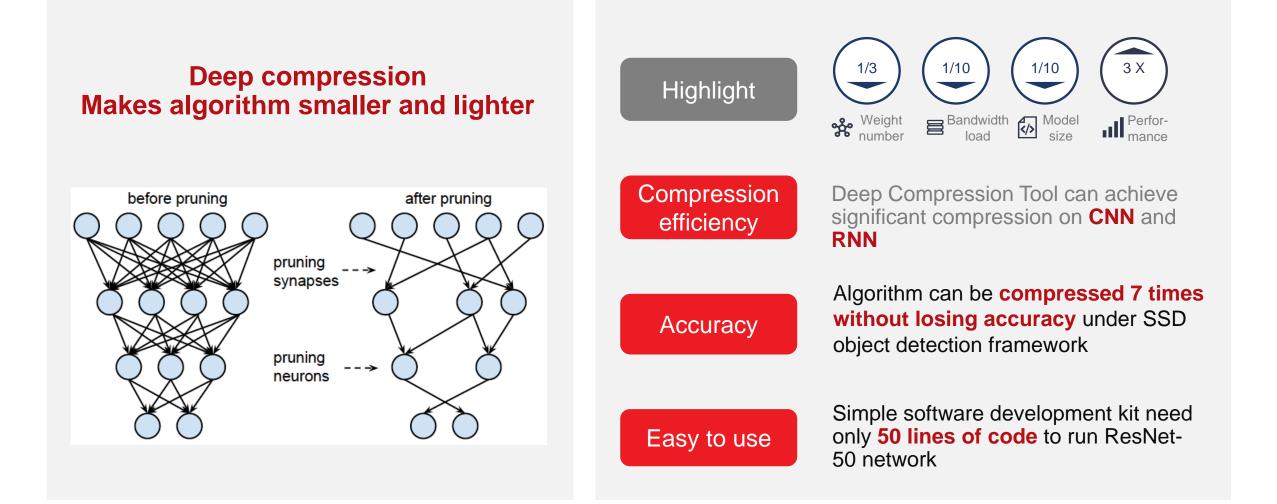
FPGA 2017 Best Paper

Leading Solution for Deep Learning Acceleration



Being designed: ZU2 Approght Z0138 XIUtsev/ZU7ev, ZU15

Core advantage | Deep compression algorithm

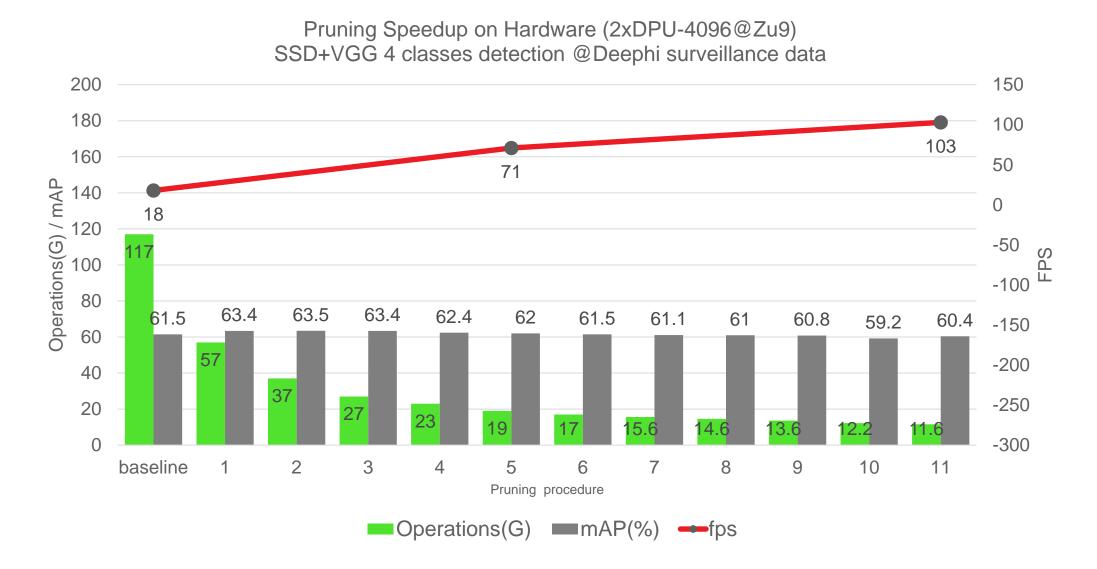


Pruning Results

Classification Networks	Baseline	Pruning Result 1			Pruning Result 2			
Classification networks	Тор-5	Тор-5	ΔΤορ5	ratio	Top-5	∆Тор5	ratio	
Resnet50 [7.7G]	91.65%	91.23%	-0.42%	40%	90.79%	-0.86%	32%	
Inception_v1 [3.2G]	89.60%	89.02%	-0.58%	80%	88.58%	-1.02%	72%	
Inception_v2 [4.0G]	91.07%	90.37%	-0.70%	60%	90.07%	-1.00%	55%	
SqueezeNet [778M]	83.19%	82.46%	-0.73%	89%	81.57%	-1.62%	75%	
Detection Networks	Baseline	Pruning Result		1	Pruning Result 2			
	mAP	mAP	ΔmAP	ratio	mAP	ΔmAP	ratio	
DetectNet [17.5G]	44.46	45.7	+1.24	63%	45.12	+0.66	50%	
SSD+VGG [117G]	61.5	62.0	+0.5	16%	60.4	-1.1	10%	
[A] SSD+VGG [173G]	57.1	58.7	+1.6	40%	56.6	-0.5	12%	
[B] Yolov2 [198G]	80.4	81.9	+1.5	28%	79.2	-1.2	7%	
Commentation Naturalia	Baseline	Pruning Result 1		Pruning Result 2		2		
Segmentation Networks	mloU	mloU	ΔmloU	ratio	mloU	ΔmloU	ratio	
FPN [163G]	65.69%	65.21%	-0.48%	80%	64.07%	-1.62%	60%	

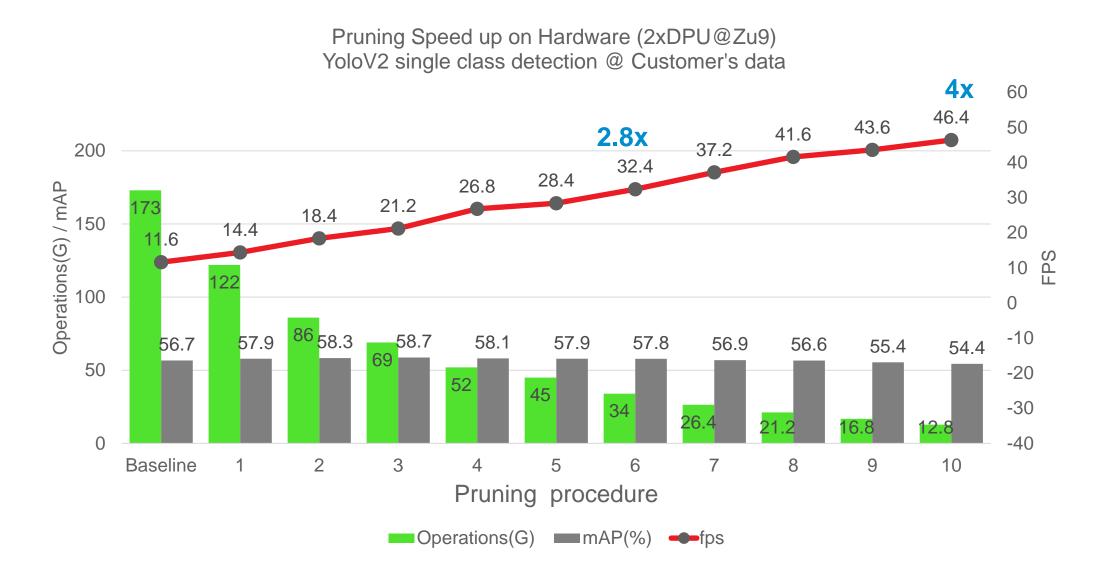
Copyright 2018 XIIInx

Pruning Speedup Example – SSD



E XILINX.

Pruning Speedup Example – Yolo_v2



XILINX DEVELOPER FORUM

© Copyright 2018 Xilinx

E XILINX.

Compression perspective

Research	Quantization	 Low-bit and hybrid low-bit quantization Some simple hybrid low-bit experiments [Compared to 8bit results, without finetune] 20% model size reduce, <1% accuracy drop 10% model size reduce, <1% accuracy drop (hardware-friendly low-bit patterns) 7nm FPGA with math engine Some fp32/fp16 resources -> Relax some restrictions for quantization -> Better performance For low-bit quantization, non-uniform quantization with lookup tables is possible Some layers can run without quantization AutoML for quantization Automated quantization for hybrid low-bit quantization 						
	Pruning	 AutoML for pruning Automated pruning by reinforcement learning 						
Tools	> Fully tested to	ession tool supporting different frameworks ols, ease of use ed for pruning tool, supporting cluster Caffe TensorFlow Pytorch						

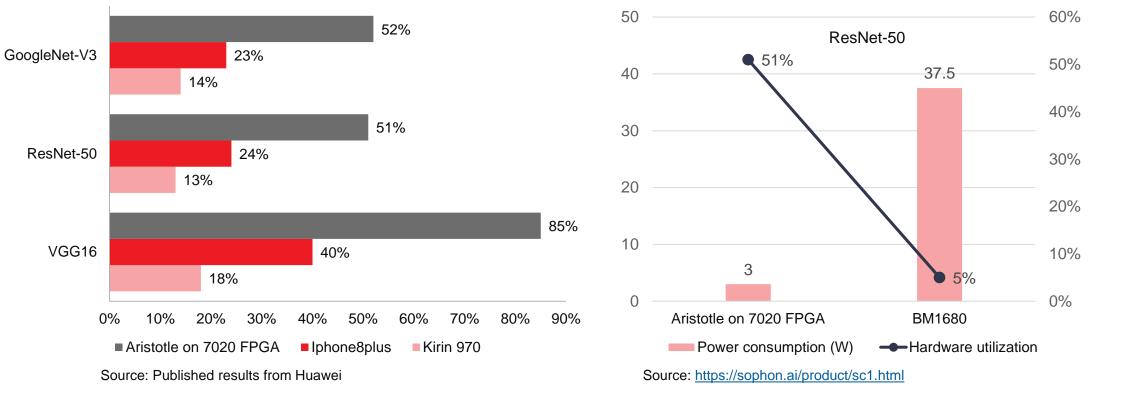
Core advantage | Instruction set and DPU architecture

DPU Aristotle CNN accelerator

Very high hardware utilization

DPU/FPGA v.s. Sophon BM1680 (ASIC-Bitmain)

Under the same computing power performance, DeePhi's FPGA lead Sophon significantly both in power consumption and hardware utilization



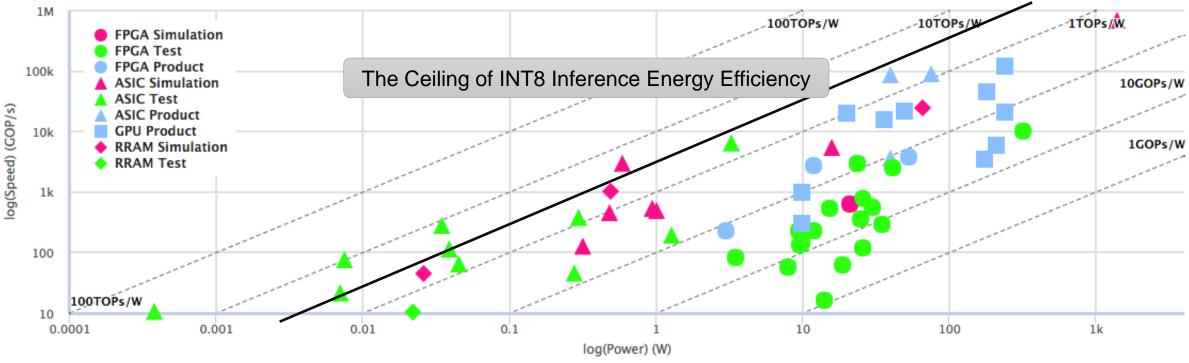
Note: *For ResNet-50, Sophon is 112GOPS with 2TOPS at peak, utilization is 5.5%. Aristotle is 117GOPS with 230GOPS at peak, utilization is 51%

© Copyright 2018 Xilinx

Current Ceiling of CNN Architecture

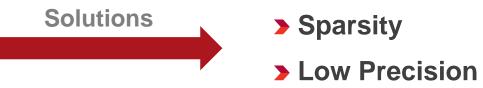
Neural network accelerator comparison

Click and drag to zoom in. Hold down shift key to pan.

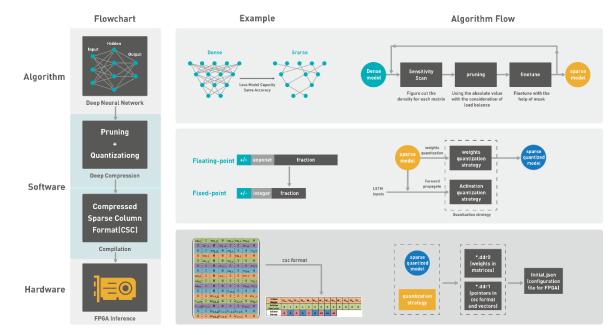


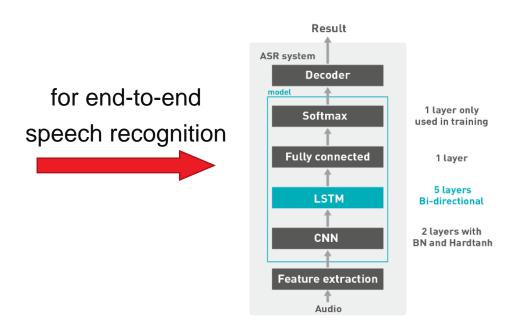
Source:http://nics-efc.org/projects/neural-network-accelerator/

INT8 improvements are slowing down and approaching the ceiling.



Sparsity architecture exploration





Partners

- On clouds, aiming at customers all over the world
- C-D Alibaba Cloud
- Already officially launched in AWS Marketplace and HUAWEI cloud

(http://www.deephi.com/ddese.html)

Now transplanting to Alibaba cloud

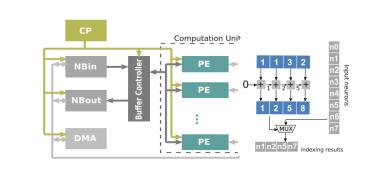
Features

Low storage	Model compressed more than 10X with negligible loss of accuracy
Low latency	More than 2X speedup compared to GPU (P4)
Programmable	Reconfigurable for different requirements

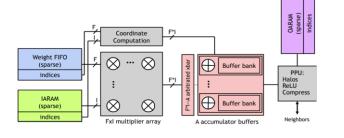
HUAWEI

Challenges of Sparse NN Accelerator

- The conflicts of the irregular pattern of mem access and the regular pattern of calculating
- Difficult to take account of the sparsity of both activation and weights at the same time.
- Additional on-chip memory requirements for indexes



Cambricon-X, MICRO,2016



SCNN, ISCA,2017

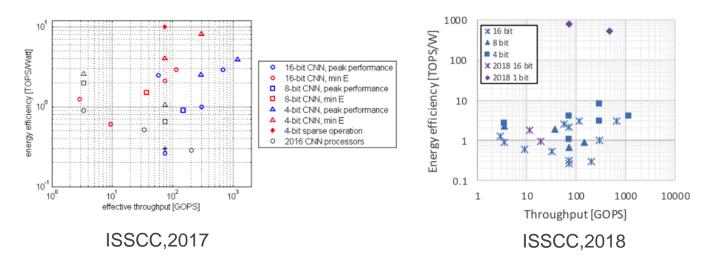
EIE, FPGA,2017

Typical Work of Sparse NN Accelerators

ven Ptr SRAM

Pointer Read

Potentials of low precision



Scales performance

- > Reduces hardware resources
- Less bandwidth/on-chip memory requirement

Low Precision Becomes Popular

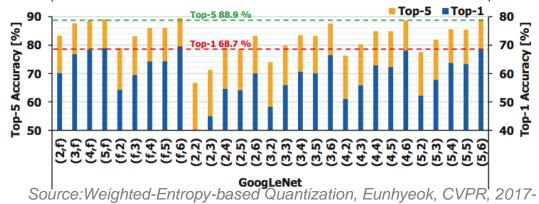
Energy Cost						
Operation	Energy(pJ)					
1bit Fixed-point MAC	0.118					
4bit Fixed-point MAC	0.517					
8bit Fixed-point MAC	0.865					
16bit Fixed-point MAC	1.64					
*65nm process,200Mhz,1.2v,25°C						

Model Size(ResNet-50)					
Precision Size(MB)					
1b	3.2				
8b	25.5				
32b	102.5				

Regular memory access pattern and calculating pattern

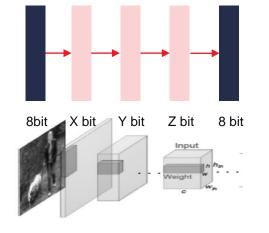
FPGA benefits a lot from low-precision.

Architecture perspective: Mixed Low-Precision

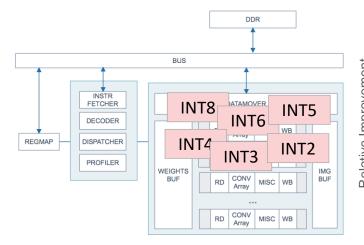


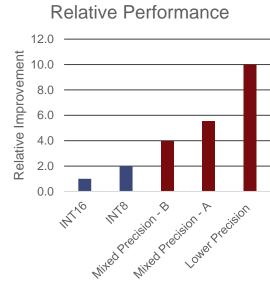
Fixed low-precision quantization already showed competitive results.

Next generation: **Variable** precision of activation/weights among layers









*accuracy drop less than 1%

BW	2	3	4	5	6	7	8
wgt	0	3	4	6	0	0	3
act	0	0	0	2	5	10	5
BW	2	3	4	5	6	7	8
BW wgt	2 0	3 0	4 3	5 22	6 17	7 10	8 2
			-			7 10 13	

BW	2	3	4	5	6	7	8
wgt	0	0	0	15	84	38	13
act	0	0	0	0	6	84	99

Preliminary experiments on popular networks. (vgg-16,resNet-50,inceptionv4)

© Copyright 2018 Xilinx

Architecture perspective: Mixed Low-Precision CNN

> Mixed Precision Support

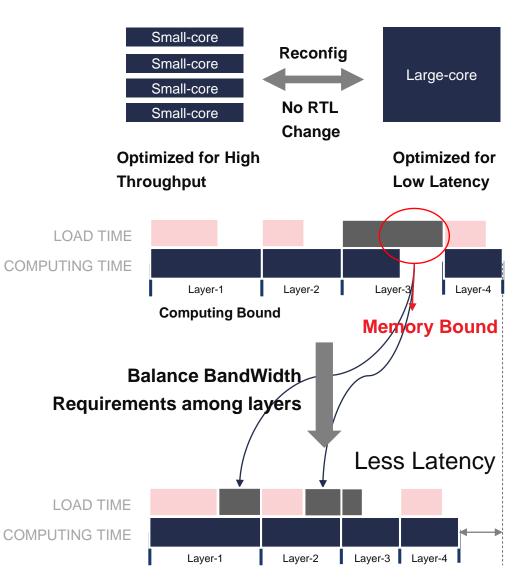
>> INT8/6/5/4/3/2

> Flexible Between Throughput and Latency

Switch between Throughput-Opt-Mode and Latency-Opt-Mode without RTL change

> Enhanced Dataflow Techniques

- Make the balance among different layers. Do NOT require the model can be fully placed on chip, but load the data at the right time.
- > Physical-aware data flow design to meet higher frequency.
- Supports high-resolution images at high utilization.

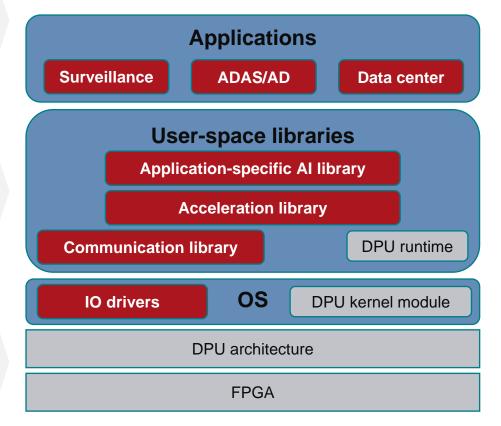


Software perspective

> Continuous supporting customers for products and solutions Application Improving surveillance products and providing more ADAS/AD demonstration to customers > System-level optimization for applications Accelerating time-consuming operations by FPGA and optimizing memory access > Providing complete SDK for surveillance customers >> Such as face and vehicle related SDK SDK Constructing ADAS/AD libraries for internal developers and > customers >> Such as vehicle detection, segmentation etc. > Providing system for evaluation and product boards Embedded

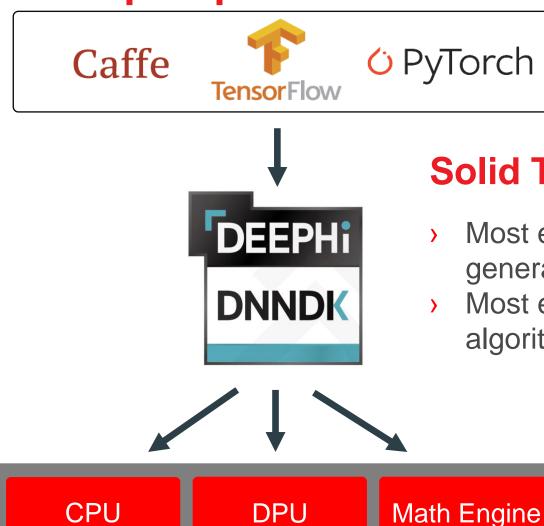
- From ZU2 to ZU11 >>
- **Developing more IO drivers** >
 - >> Such as USB 3.0, MIPI etc.
- Researching other system related with our products >

Software team will provide full stack solutions for AI applications



E XILINX.

DNNDK perspective

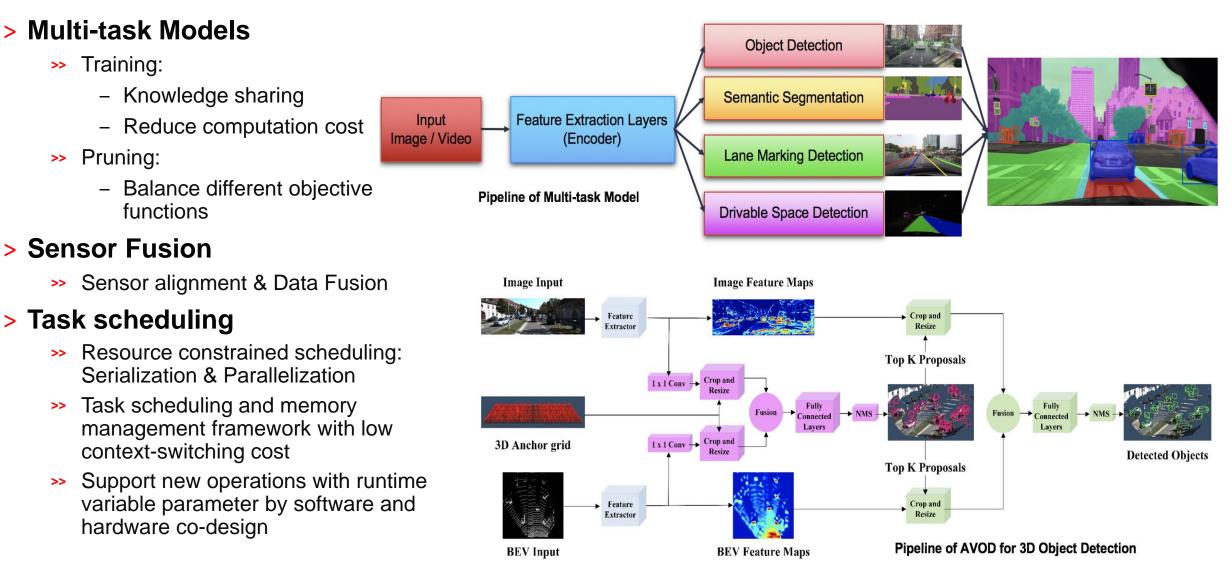


XILINX 7nm Everest Architecture

Solid Toolchain Stack for XILINX ACAP

- Most efficiency solution for ML on XILINX next generation computing platform
- Most easy-to-use & productive toolchain for ML algorithms deployment

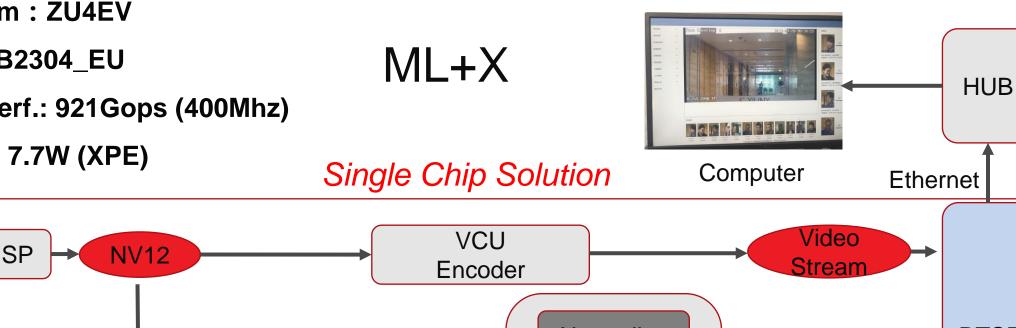
System perspective: schedule ADAS tasks in single FPGA

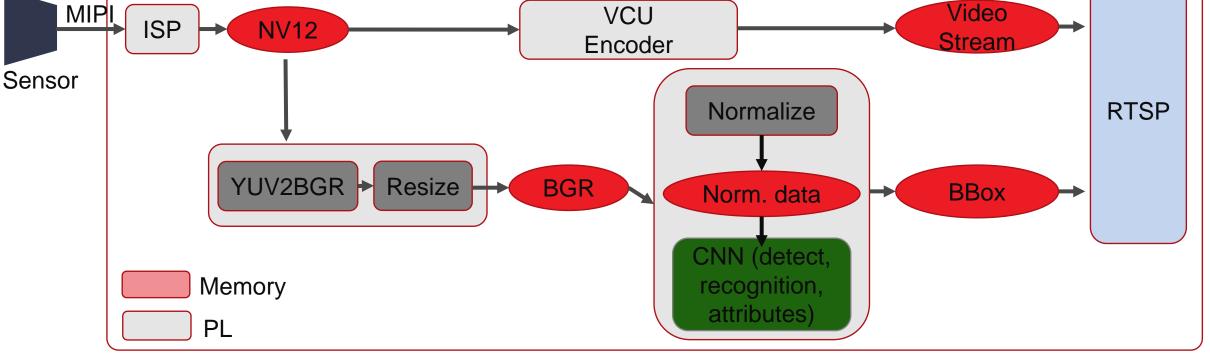


EXILINX.

System perspective: Video Surveillance in single FPGA

- > DPU : B2304_EU
- > Peak perf.: 921Gops (400Mhz)
- > Power: 7.7W (XPE)





This solution needs to further enhance ISP functionality

E XILINX.

Attend presentations and workshops for more details

	DAY 1		1	DAY 2		
	Crystal	Piedmont		Regency 1		Sacramento
9am-10am			9am-10am	1		
10am-11am	Machine learning for embedded		10am-11a	m		
11am-12pm	systems		11am-12p	m		
12pm-1pm	Building ML vision systems with SDSoC		12pm-1pn	n Machine learning with DeePhi		
1pm-2pm		Machine learning with DeePhi	1pm-2pm	Ford ADAS		
2pm-3pm	Machine learning for embedded	Machine learning for embedded	2pm-3pm	Machine learning for embedded		Building ML vision systems with SDSoC
3pm-4pm	systems Machine learning	Machine Learning	3pm-4pm	Machine Learning with SDSoC for EV]	Machine learning
4pm-5pm	for embedded systems	with SDSoC for EV	4pm-5pm	ML Expert panel		for embedded systems
Presenta	ation	ab	5pm-6pm			
Interact		op required)	© Copyright 2018 Xilinx			E XILINX.

XILINX DEVELOPER FORUM

© Copyright 2018 Xilinx

Architecture perspective: Mixed Low-Precision CNN

> Mixed Precision Support

>> INT8/6/5/4/3/2

> Flexible Between Throughput and Latency

Switch between Throughput-Opt-Mode and Latency-Opt-Mode without RTL change

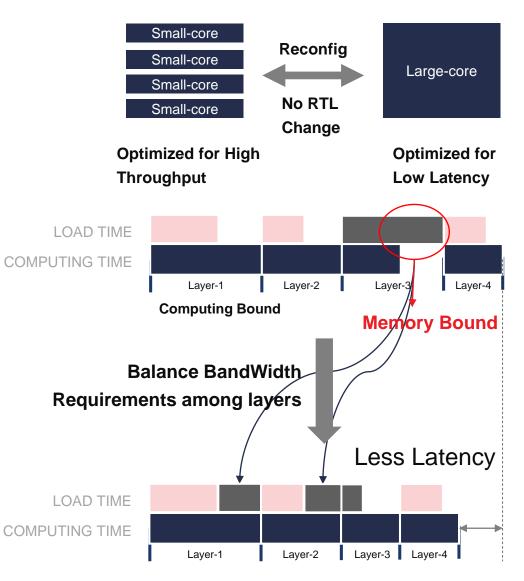
> Enhanced Dataflow Techniques

- Make the balance among different layers. Do NOT require the model can be fully placed on chip, but load the data at the right time.
- Physical-aware data flow design to meet higher frequency.
- >> Supports high-resolution images at high utilization.

> Performance Target (googlenet_v1)

- >> 3103 FPS (INT8)
- >> 5320 FPS (INT8/4/2 mixed)
- >> 12412 FPS (INT2 only)

> Release Plan



© Copyright 2018 Xilinx